Tikhonov regularization with oversmoothing penalty for linear statistical inverse learning problems

被引:0
作者
Rastogi, Abhishake [1 ]
机构
[1] Univ Potsdam, Inst Math, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
来源
THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019) | 2019年 / 2183卷
关键词
Statistical inverse problem; Tikhonov regularization; Hilbert Scales; Reproducing kernel Hilbert space; Minimax convergence rates; HILBERT SCALES;
D O I
10.1063/1.5136221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the linear ill-posed inverse problem with noisy data in the statistical learning setting. The Tikhonov regularization scheme in Hilbert scales is considered in the reproducing kernel Hilbert space framework to reconstruct the estimator from the random noisy data. We discuss the rates of convergence for the regularized solution under the prior assumptions and link condition. For regression functions with smoothness given in terms of source conditions the error bound can explicitly be established.
引用
收藏
页数:4
相关论文
共 7 条
[1]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[2]   Optimal Rates for Regularization of Statistical Inverse Learning Problems [J].
Blanchard, Gilles ;
Muecke, Nicole .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (04) :971-1013
[3]  
Bottcher A., 2006, Appli- cable Analysis, V85, P555
[4]  
Engl H. W., 1996, MATH APPL, V375
[5]  
Mathe P., 2007, FAR E J MATH SCI, V24, P1
[6]   Interpolation in variable Hilbert scales with application to inverse problems [J].
Mathe, Peter ;
Tautenhahn, Ulrich .
INVERSE PROBLEMS, 2006, 22 (06) :2271-2297
[7]   Regularization in Hilbert scales under general smoothing conditions [J].
Nair, MT ;
Pereverzev, SV ;
Tautenhahn, U .
INVERSE PROBLEMS, 2005, 21 (06) :1851-1869