Protecting the precision of estimation in a photonic crystal

被引:28
作者
Berrada, K. [1 ,2 ]
机构
[1] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Phys, Riyadh, Saudi Arabia
[2] Abdus Salam Int Ctr Theoret Phys, Miramare Trieste, Italy
关键词
SPONTANEOUS EMISSION; QUANTUM; ATOMS; FIELD; EDGE;
D O I
10.1364/JOSAB.32.000571
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The quantum Fisher information (QFI) of a two-level atom in an anisotropic and isotropic photonic band-gap (PBG) crystal has been studied without Born or Markovian approximation. We show that the precision of the parameter estimation for the two-level atom in the photonic crystal is greatly different from that of a two-level atom in vacuum or that subjected to the usual non-Markovian reservoir. The phenomenon shows that the QFI, namely, the precision of estimation, changes dramatically with the environment structure. The results also show that, for PBG materials, environmentally high values of QFI trapping can be achieved and thus prevention of QFI sudden drop occurs, which greatly enhances the coherence and increases the precision of estimation. Moreover, the QFI in the isotropic PBG is more easily preserved than that of the anisotropic PBG under the same condition. These features make the atom system in PBG materials a good candidate for implementation of different schemes of quantum optics and information with high precision. (C) 2015 Optical Society of America
引用
收藏
页码:571 / 576
页数:6
相关论文
共 39 条
[1]   Entanglement trapping in structured environments [J].
Bellomo, Bruno ;
Lo Franco, Rosario ;
Maniscalco, Sabrina ;
Compagno, Giuseppe .
PHYSICAL REVIEW A, 2008, 78 (06)
[2]  
Berrada K, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.035806
[3]   Quantum metrology with SU(1,1) coherent states in the presence of nonlinear phase shifts [J].
Berrada, K. .
PHYSICAL REVIEW A, 2013, 88 (01)
[4]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[5]   Photonic band gap formation in certain self-organizing systems [J].
Busch, K ;
John, S .
PHYSICAL REVIEW E, 1998, 58 (03) :3896-3908
[6]  
Cramer H.., 1999, Mathematical Methods of Statistics, V43
[7]   Quantum phase estimation with lossy interferometers [J].
Demkowicz-Dobrzanski, R. ;
Dorner, U. ;
Smith, B. J. ;
Lundeen, J. S. ;
Wasilewski, W. ;
Banaszek, K. ;
Walmsley, I. A. .
PHYSICAL REVIEW A, 2009, 80 (01)
[8]   Optimal Quantum Phase Estimation [J].
Dorner, U. ;
Demkowicz-Dobrzanski, R. ;
Smith, B. J. ;
Lundeen, J. S. ;
Wasilewski, W. ;
Banaszek, K. ;
Walmsley, I. A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)
[9]   Quantum optical metrology - the lowdown on high-N00N states [J].
Dowling, Jonathan P. .
CONTEMPORARY PHYSICS, 2008, 49 (02) :125-143
[10]   Autocorrelation function of microcavity-emitting field in the non-linear regime [J].
Eleuch, H. ;
Rachid, N. .
EUROPEAN PHYSICAL JOURNAL D, 2010, 57 (02) :259-264