Conservation laws for pure-cubic optical solitons with complex Ginzburg-Landau equation having several refractive index structures

被引:28
作者
Biswas, Anjan [1 ,3 ,4 ,5 ]
Kara, Abdul H. [6 ]
Sun, Yunzhou [2 ]
Zhou, Qin [2 ,3 ]
Yildirim, Yakup [7 ]
Alshehri, Hashim M. [3 ]
Belic, Milivoj R. [8 ]
机构
[1] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[2] Wuhan Text Univ, Sch Math & Phys Sci, Wuhan 430200, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[5] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[6] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
[7] Near East Univ, Fac Arts & Sci, Dept Math, CY-99138 Nicosia, Cyprus
[8] Inst Phys Belgrade, Pregrevica 118, Zemun 11080, Serbia
关键词
Solitons; Conservation laws; Ginzburg-Landau equation;
D O I
10.1016/j.rinp.2021.104901
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper derives the conserved densities for the perturbed complex Ginzburg-Landau model which is addressed with a range of nonlinear forms. The densities are derived with the implementation of Lie symmetry analysis while the conserved quantities are obtained from the soliton solutions to the model. For two such nonlinear forms the Hamiltonian cease to exist since the corresponding integrals are rendered divergent.
引用
收藏
页数:7
相关论文
共 10 条
[1]   Application of the first integral method for solving (1+1) dimensional cubic-quintic complex Ginzburg-Landau equation [J].
Akram, Ghazala ;
Mahak, Nadia .
OPTIK, 2018, 164 :210-217
[2]  
Biswas A, J APPL SCI ENG, V24, P937
[3]   Discrete localized excitations for discrete conformable fractional cubic-quintic Ginzburg-Landau model possessing the non-local quintic term [J].
Mou, Da-Sheng ;
Fang, Jia-Jie ;
Fan, Yan .
OPTIK, 2021, 244
[4]   Solving generalized quintic complex Ginzburg-Landau equation by homotopy analysis method [J].
Naghshband, Soheila ;
Araghi, Mohammad Ali Fariborzi .
AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) :607-613
[5]   Generation of stable multi-vortex clusters in a dissipative medium with anti-cubic nonlinearity [J].
Qiu, Yunli ;
Malomed, Boris A. ;
Mihalache, Dumitru ;
Zhu, Xing ;
Peng, Jianle ;
He, Yingji .
PHYSICS LETTERS A, 2019, 383 (22) :2579-2583
[6]   TEMPORAL SOLITONS OF MODIFIED COMPLEX GINZBURG LANDAU EQUATION [J].
Shwetanshumala, S. .
PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2008, 3 :17-24
[7]   Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects [J].
Yan, Yuanyuan ;
Liu, Wenjun .
APPLIED MATHEMATICS LETTERS, 2019, 98 :171-176
[8]   Exact stationary wave patterns in three coupled nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Yan, Zhenya ;
Chow, K. W. ;
Malomed, Boris A. .
CHAOS SOLITONS & FRACTALS, 2009, 42 (05) :3013-3019
[9]   Pure-Cubic Optical Soliton Perturbation with Complex Ginzburg-Landau Equation Having a Dozen Nonlinear Refractive Index Structures [J].
Zayed, Elsayed M. E. ;
Alngar, Mohamed E. M. ;
Biswas, Anjan ;
Ekici, Mehmet ;
Khan, Salam ;
Alshomrani, Ali Saleh .
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2021, 66 (05) :481-544
[10]   Cascade replication of soliton solutions in the one-dimensional complex cubic-quintic Ginzburg-Landau equation [J].
Zhao, Yao ;
Xia, Chuan-Yin ;
Zeng, Hua-Bi .
PHYSICS LETTERS A, 2020, 384 (18)