Adaptive nonsingular fast terminal sliding mode control for underwater manipulator robotics with asymmetric saturation actuators

被引:24
作者
Zhou, Zengcheng [1 ]
Tang, Guoyuan [1 ,2 ]
Huang, Hui [1 ]
Han, Lijun [1 ]
Xu, Ruikun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Hubei, Peoples R China
[2] Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite time stability; sliding mode control; asymmetric saturation; underwater manipulator; Gaussian error function; CABLE-DRIVEN MANIPULATORS; NONLINEAR-SYSTEMS; TRAJECTORY TRACKING; FEEDBACK;
D O I
10.1007/s11768-020-9127-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an adaptive nonsingular fast terminal sliding mode control (ANFTSMC) is proposed for underwater manipulator robotics with asymmetric actuator saturations and unknown time-varying (TV) external disturbances. Firstly, the nonsingular fast terminal sliding mode (NFTSM) control scheme is conducted for the underwater manipulator robotics, which guarantees the boundedness of all the signals in the control system. Secondly, the adaptive method and the smooth hyperbolic tangent (tanh) function are introduced to address the unknown TV external disturbances and the input saturation errors. Thus the prior knowledge about the upper bounds of the system uncertainties is not needed in this paper. To deal with the nonlinear asymmetric input saturation issue, a Gaussian error function is employed in the asymmetric saturation module so that the discontinuous input signals can be transformed into smooth forms. Thirdly, the rigorous mathematical verification is conducted to demonstrate the stability and finite-time convergence of the closed-loop control system via the Lyapunov theory. Finally, numerical simulations are performed on a two-link underwater manipulator robotic system to illustrate the effectiveness of the proposed controller.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 37 条
[1]   Global Trajectory Tracking Through Static Feedback for Robot Manipulators With Bounded Inputs [J].
Aguinaga-Ruiz, Emeterio ;
Zavala-Rio, Arturo ;
Santibanez, Victor ;
Reyes, Fernando .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2009, 17 (04) :934-944
[2]   An Adaptive Terminal Sliding Mode Control for Robot Manipulators With Non-Singular Terminal Sliding Surface Variables [J].
Anh Tuan Vo ;
Kang, Hee-Jun .
IEEE ACCESS, 2019, 7 :6701-6712
[3]  
[Anonymous], 2008, P INT WORKSH ED TECH
[4]  
[Anonymous], 1989, ADV ROBOTICS, DOI DOI 10.1163/156855390X00152
[5]   A New Adaptive Sliding-Mode Control Scheme for Application to Robot Manipulators [J].
Baek, Jaemin ;
Jin, Maolin ;
Han, Soohee .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (06) :3628-3637
[6]   Robust Adaptive Tracking Control of the Underwater Robot with Input Nonlinearity Using Neural Networks [J].
Chen, Mou ;
Jiang, Bin ;
Zou, Jie ;
Feng, Xing .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2010, 3 (05) :646-655
[7]   Adaptive Fuzzy Sliding Mode Diving Control for Autonomous Underwater Vehicle with Input Constraint [J].
Chu, Zhenzhong ;
Xiang, Xianbo ;
Zhu, Daqi ;
Luo, Chaomin ;
Xie, De .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (05) :1460-1469
[8]  
Dong-Soo Kwon, 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P3114, DOI 10.1109/ROBOT.2000.845142
[9]   Sliding-Mode Robot Control With Exponential Reaching Law [J].
Fallaha, Charles J. ;
Saad, Maarouf ;
Kanaan, Hadi Youssef ;
Al-Haddad, Kamal .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (02) :600-610
[10]   Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation [J].
He, Wei ;
Dong, Yiting ;
Sun, Changyin .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (03) :334-344