A study of the agglomerate catalyst layer for the cathode side of a proton exchange membrane fuel cell: Modeling and optimization

被引:48
作者
Khajeh-Hosseini-Dalasm, N. [1 ]
Fesanghary, M. [2 ]
Fushinobu, K. [1 ]
Okazaki, K. [1 ]
机构
[1] Tokyo Inst Technol, Dept Mech & Control Engn, Meguro Ku, Tokyo 1528552, Japan
[2] Louisiana State Univ, Dept Mech Engn, Baton Rouge, LA 70803 USA
关键词
Catalyst layer; Structural parameters; Analysis of means; Analysis of variance; Optimization; HARMONY SEARCH ALGORITHM; DIRECT METHANOL; NAFION; DIFFUSION; KNUDSEN; WATER;
D O I
10.1016/j.electacta.2011.10.099
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A comprehensive mathematical model for the cathode catalyst layer (CL) of a proton exchange membrane fuel cell (PEMFC) is developed to investigate its performance, which is determined by activation overpotential. Numerous cathode CL parameters such as the saturation and eight structural parameters, namely, ionomer film thickness covering each agglomerate, agglomerate radius, platinum loading, carbon loading, ionomer volume fraction, gas diffusion layer penetration content and its porosity, and CL thickness are taken into account. The main effects of each parameter and their interactions are investigated using the analysis of means (ANOM) and interaction plots, respectively. Analysis of variance (ANOVA) is used to identify the influence of the CL structural parameters on the activation overpotential. Finally, an evolutionary optimization algorithm is employed to maximize the cathode CL's performance. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 38 条
[1]   DIFFUSION OF GASES IN POROUS SOLIDS - MONTE-CARLO SIMULATIONS IN THE KNUDSEN AND ORDINARY DIFFUSION REGIMES [J].
ABBASI, MH ;
EVANS, JW ;
ABRAMSON, IS .
AICHE JOURNAL, 1983, 29 (04) :617-624
[2]   Prediction and analysis of flow behavior of a polymer melt through nanochannels using artificial neural network and statistical methods [J].
Ahadian, Samad ;
Mizuseki, Hiroshi ;
Kawazoe, Yoshiyuki .
MICROFLUIDICS AND NANOFLUIDICS, 2010, 9 (2-3) :319-328
[3]   Water Management in a Passive DMFC Using Highly Concentrated Methanol Solution [J].
Bahrami, Hafez ;
Faghri, Amir .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (02)
[4]   Transient Analysis of a Passive Direct Methanol Fuel Cell Using Pure Methanol [J].
Bahrami, Hafez ;
Faghri, Amir .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) :B1762-B1776
[5]   Transport phenomena in a semi-passive direct methanol fuel cell [J].
Bahrami, Hafez ;
Faghri, Amir .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (11-12) :2563-2578
[6]  
Barbir F, 2005, SUSTAIN WORLD SER, P1
[7]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[8]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[9]  
Bird R B., 2002, Transportphenomena
[10]   Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey [J].
Ceylan, Huseyin ;
Ceylan, Halim ;
HaIdenbilen, Soner ;
Baskan, Ozgur .
ENERGY POLICY, 2008, 36 (07) :2527-2535