Why Delannoy numbers?

被引:85
作者
Banderier, C [1 ]
Schwer, S [1 ]
机构
[1] Univ Paris 13, LIPN, UMR 7030, F-93430 Villetaneuse, France
关键词
lattice paths enumeration; ballot problems;
D O I
10.1016/j.jspi.2005.02.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is not a research paper, but a little note on the history of combinatories: we present here a tentative short biography of Henri Delannoy, and a survey of his most notable works,This answers, the question raised in the title, as these works are related to lattice paths enumeration to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 86 条
[61]  
MOSER L, 1963, SCRIPTA MATH, V26, P223
[63]  
NARAYANA TV, 1955, CR HEBD ACAD SCI, V240, P1188
[64]  
Netto E., 1958, Lehrbuch der Combinatorik
[65]  
PAUL JL, 1982, P 13 SE C COMB GRAPH, V36, P137
[66]  
PEART P, 2000, P 31 SE INT C COMB G, V144, P153
[67]   BIJECTIVE PROOF OF A TOUCHARD-RIORDAN FORMULA [J].
PENAUD, JG .
DISCRETE MATHEMATICS, 1995, 139 (1-3) :347-360
[68]   Combinatorial number characterisation for groups, graphs and chemical compounds [J].
Polya, G .
ACTA MATHEMATICA, 1937, 68 (01) :145-254
[69]  
Riordan J., 1979, Combinatorial Identities
[70]  
ROUCHE E, 1888, SMF B, V14, P149