Comparison of perturbation bounds for the stationary distribution of a Markov chain

被引:131
作者
Cho, GE
Meyer, CD
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Boeing Co, Math & Engn Anal, Seattle, WA 98124 USA
基金
美国国家科学基金会;
关键词
Markov chains; stationary distribution; stochastic matrix; group inversion; sensitivity analysis; perturbation theory; condition numbers;
D O I
10.1016/S0024-3795(01)00320-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to review and compare the existing perturbation bounds for the stationary distribution of a finite, irreducible, homogeneous Markov chain. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 1956, THEOR PROBAB APPL+, DOI [10.1137/1101006, DOI 10.1137/1101006]
[2]   Markov chain sensitivity measured by mean first passage times [J].
Cho, GE ;
Meyer, CD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 316 (1-3) :21-28
[3]  
Dobrushin RL, 1956, THEOR PROBAB APPL, V1, P329, DOI DOI 10.1137/1101029
[4]   SENSITIVITY OF THE STATIONARY DISTRIBUTION VECTOR FOR AN ERGODIC MARKOV-CHAIN [J].
FUNDERLIC, RE ;
MEYER, CD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 76 :1-17
[5]   PERTURBATION BOUNDS FOR THE STATIONARY PROBABILITIES OF A FINITE MARKOV-CHAIN [J].
HAVIV, M ;
VANDERHEYDEN, L .
ADVANCES IN APPLIED PROBABILITY, 1984, 16 (04) :804-818
[6]   UNIFORM STABILITY OF MARKOV-CHAINS [J].
IPSEN, ICF ;
MEYER, CD .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (04) :1061-1074
[7]  
Isaacson D. L., 1976, MARKOV CHAINS THEORY
[8]  
Kemeny J G., 1960, Finite Markov Chains
[9]   Applications of Paz's inequality to perturbation bounds for Markov chains [J].
Kirkland, SJ ;
Neumann, M ;
Shader, BL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 268 :183-196
[10]  
LESANOVSKY A, 1990, CZECH MATH J, V40, P284