One-dimensional p-Laplacian with a strong singular indefinite weight, I.: Eigenvalue

被引:30
作者
Kajikiya, Ryuji [1 ]
Lee, Yong-Hoon [2 ]
Sim, Inbo [2 ]
机构
[1] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan
[2] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
p-Laplace equation; regularity; initial value problem; eigenvalue problem;
D O I
10.1016/j.jde.2007.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of eigenvalues for the problem {phi(p)(u'(t))' + lambda h(t)phi(p)(u(t)) = 0, a.e. in (0, 1), u(0) = u(1) = 0, where phi(p)(s) = |s|(p-2)s, p > 1, lambda is a real parameter and the indefinite weight h is a nonnegative measurable function on (0, 1) which may be singular at 0 and/or 1, and h not equivalent to 0 on any compact subinterval in (0, 1). We derive similar properties of eigenvalues as known in linear case (p = 2) or continuous case (h is an element of C[0, 1]) if h satisfies integral(1)(0) t(p-1) (1-t)(p-1) h(t) dt < infinity when 1 < p <= 2 and integral(1/2)(0) phi(-1)(p)(integral(1/2)(s) h(tau)d tau)ds + integral(1)(1/2) phi(-1)(p) (integral(s)(1/2) h(tau)d tau)ds < infinity when p >= 2, respectively. For the result, we establish the C-1-regularity of all solutions at the boundary for the above problem as well as the following problem: {phi(p)(u'(t))' + lambda h(t)f(u(t)) = 0, a.e. in (0, 1), u(0) = u(1) = 0, where f is an element of C (R, R), sf(s) > 0 for s not equal 0, f is odd and f(s)/phi(p)(s) is bounded above as s -> 0. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1985 / 2019
页数:35
相关论文
共 12 条
[1]   Eigenvalues and the one-dimensional p-Laplacian [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) :383-400
[2]  
ANANE A, 2002, ELECTRON J QUAL THEO, V17, P1
[3]   On nonresonant singular two-point boundary value problems [J].
Asakawa, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (07) :4849-4860
[4]  
BYUN J, IN PRESS MATH INEQUA
[5]   A HOMOTOPIC DEFORMATION ALONG P OF A LERAY-SCHAUDER DEGREE RESULT AND EXISTENCE FOR (/U'/P-2U')'+F(T,U)=O, U(O)=U(T)=O, P-GREATER-THAN-1 [J].
DELPINO, M ;
ELGUETA, M ;
MANASEVICH, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 80 (01) :1-13
[6]  
Garcia-Huidobro M., 2003, FUNKC EKVACIOJ-SER I, V46, P253
[7]  
JAROS J, 1999, ACTA MATH U COMENIAN, V68, P117
[8]   Multiple positive solutions for the one-dimensional p-Laplacian [J].
Kong, LB ;
Wang, JY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (08) :1327-1333
[9]   A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order [J].
Kusano, T ;
Jaros, J ;
Yoshida, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 40 (1-8) :381-395
[10]   Global bifurcation phenomena for singular one-dimensional p-Laplacian [J].
Lee, Yong-Hoon ;
Sim, Inbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (01) :229-256