Initial Value Problem for the Pair Transition Coupled Nonlinear Schrodinger Equations via the Riemann-Hilbert Method

被引:22
作者
Peng, Wei-Qi [1 ,2 ]
Tian, Shou-Fu [1 ,2 ]
Zhang, Tian-Tian [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Inst Math Phys, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Riemann-Hilbert problem; Pair transition coupled nonlinear Schrodinger equations; Soliton solution; BOUNDARY VALUE-PROBLEMS; DE-VRIES EQUATION; SOLITON-SOLUTIONS; DARBOUX TRANSFORMATION; EVOLUTION-EQUATIONS; WAVES;
D O I
10.1007/s11785-020-00997-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the matrix Riemann-Hilbert problem of the pair transition coupled nonlinear Schrodinger (ptcNLS) equations is presented in the complex zeta-plane. According to the unique solution of the resulting Riemann-Hilbert problem, the formal soliton solution to the initial value problem of the ptcNLS equations is derived ultimately.
引用
收藏
页数:15
相关论文
共 37 条
[31]   An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4 x 4 Lax pair on the half-line [J].
Yan, Zhenya .
CHAOS, 2017, 27 (05)
[32]  
Zaharov V. E., 1974, Funct. Appl. Anal, V8, P226
[33]  
Zakharov V.E., 1979, Functional Analysis and its Applications, V13, P166, DOI [DOI 10.1007/BF01077483, 10.1007/BF01077483]
[34]  
ZAKHAROV VE, 1972, SOV PHYS JETP-USSR, V34, P62
[35]   Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrodinger equations [J].
Zhang, Guoqiang ;
Yan, Zhenya ;
Wen, Xiao-Yong .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2203)
[36]   Darboux Transformation of the Second-Type Derivative Nonlinear Schrodinger Equation [J].
Zhang, Yongshuai ;
Guo, Lijuan ;
He, Jingsong ;
Zhou, Zixiang .
LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (06) :853-891
[37]   N-fold Darboux transformation and discrete soliton solutions for the discrete Hirota equation [J].
Zhao, Xiao-Juan ;
Guo, Rui ;
Hao, Hui-Qin .
APPLIED MATHEMATICS LETTERS, 2018, 75 :114-120