Initial Value Problem for the Pair Transition Coupled Nonlinear Schrodinger Equations via the Riemann-Hilbert Method

被引:22
作者
Peng, Wei-Qi [1 ,2 ]
Tian, Shou-Fu [1 ,2 ]
Zhang, Tian-Tian [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Inst Math Phys, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Riemann-Hilbert problem; Pair transition coupled nonlinear Schrodinger equations; Soliton solution; BOUNDARY VALUE-PROBLEMS; DE-VRIES EQUATION; SOLITON-SOLUTIONS; DARBOUX TRANSFORMATION; EVOLUTION-EQUATIONS; WAVES;
D O I
10.1007/s11785-020-00997-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the matrix Riemann-Hilbert problem of the pair transition coupled nonlinear Schrodinger (ptcNLS) equations is presented in the complex zeta-plane. According to the unique solution of the resulting Riemann-Hilbert problem, the formal soliton solution to the initial value problem of the ptcNLS equations is derived ultimately.
引用
收藏
页数:15
相关论文
共 37 条
[1]  
Ablowitz M.J., 2003, COMPLEX ANAL INTRO A
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[4]   Quasi-particle theory of optical soliton interaction [J].
Biswas, Anjan ;
Konar, Swapan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (07) :1202-1228
[5]   Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrodinger equation with partial nonlocality [J].
Dai, Chao-Qing ;
Liu, Jiu ;
Fan, Yan ;
Yu, Ding-Guo .
NONLINEAR DYNAMICS, 2017, 88 (02) :1373-1383
[6]   The short pulse equation by a Riemann-Hilbert approach [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry ;
Zielinski, Lech .
LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (07) :1345-1373
[7]   The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (03)
[8]  
Fokas AS., 2008, SIAM
[9]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[10]   Initial-Boundary Value Problems for the Coupled Nonlinear Schrodinger Equation on the Half-Line [J].
Geng, Xianguo ;
Liu, Huan ;
Zhu, Junyi .
STUDIES IN APPLIED MATHEMATICS, 2015, 135 (03) :310-346