Constrained clusterwise linear regression

被引:2
|
作者
Plaia, A [1 ]
机构
[1] Univ Palermo, Dipartimento Sci Stat & Matemat S Vianelli, Palermo, Italy
关键词
D O I
10.1007/3-540-27373-5_10
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In market segmentation, Conjoint Analysis is often used to estimate the importance of a product attributes at the level of each single customer, clustering, successively, the customers whose behavior can be considered similar. The preference model parameter estimation is made considering data (usually opinions) of a single customer at a time, but these data are usually very few as each customer is called to express his opinion about a small number of different products (in order to simplify his/her work). In the present paper a Constrained Clusterwise Linear Regression algorithm is presented, that allows simultaneously to estimate parameters and to cluster customers, using, for the estimation, the data of all the customers with similar behavior.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 50 条
  • [1] CLUSTERWISE LINEAR-REGRESSION
    SPATH, H
    COMPUTING, 1979, 22 (04) : 367 - 373
  • [2] Seemingly unrelated clusterwise linear regression
    Galimberti, Giuliano
    Soffritti, Gabriele
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (02) : 235 - 260
  • [3] Clusterwise functional linear regression models
    Li, Ting
    Song, Xinyuan
    Zhang, Yingying
    Zhu, Hongtu
    Zhu, Zhongyi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 158
  • [4] Identifiability of models for clusterwise linear regression
    Hennig, C
    JOURNAL OF CLASSIFICATION, 2000, 17 (02) : 273 - 296
  • [5] Algorithms for Generalized Clusterwise Linear Regression
    Park, Young Woong
    Jiang, Yan
    Klabjan, Diego
    Williams, Loren
    INFORMS JOURNAL ON COMPUTING, 2017, 29 (02) : 301 - 317
  • [6] Models and methods for clusterwise linear regression
    Hennig, C
    CLASSIFICATION IN THE INFORMATION AGE, 1999, : 179 - 187
  • [7] Seemingly unrelated clusterwise linear regression
    Giuliano Galimberti
    Gabriele Soffritti
    Advances in Data Analysis and Classification, 2020, 14 : 235 - 260
  • [8] Clusterwise support vector linear regression
    Joki, Kaisa
    Bagirov, Adil M.
    Karmitsa, Napsu
    Makela, Marko M.
    Taheri, Sona
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 287 (01) : 19 - 35
  • [9] Identifiablity of Models for Clusterwise Linear Regression
    C. Hennig
    Journal of Classification, 2000, 17 : 273 - 296
  • [10] Robust clusterwise linear regression through trimming
    Garcia-Escudero, L. A.
    Gordaliza, A.
    Mayo-Iscar, A.
    San Martin, R.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 3057 - 3069