Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3

被引:17
作者
Buckeridge, J. [1 ]
Taylor, F. H. [1 ]
Catlow, C. R. A. [1 ]
机构
[1] UCL, Dept Chem, Kathleen Lonsdale Mat Chem, 20 Gordon St, London WC1H 0AJ, England
基金
英国工程与自然科学研究理事会;
关键词
PEROVSKITE-TYPE OXIDES; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; SPIN-STATE TRANSITION; OXYGEN-ION MIGRATION; FUEL-CELL MATERIALS; AB-INITIO; ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; THERMAL-EXPANSION;
D O I
10.1103/PhysRevB.93.155123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Complex perovskite oxides are promising materials for cathode layers in solid oxide fuel cells. Such materials have intricate electronic, magnetic, and crystalline structures that prove challenging to model accurately. We analyze a wide range of standard density functional theory approaches to modeling a highly promising system, the perovskite LaCoO3, focusing on optimizing the Hubbard U parameter to treat the self-interaction of the B-site cation's d states, in order to determine the most appropriate method to study defect formation and the effect of spin on local structure. By calculating structural and electronic properties for different magnetic states we determine that U = 4 eV for Co in LaCoO3 agrees best with available experiments. We demonstrate that the generalized gradient approximation (PBEsol+U) is most appropriate for studying structure versus spin state, while the local density approximation (LDA+U) is most appropriate for determining accurate energetics for defect properties.
引用
收藏
页数:8
相关论文
共 123 条
[1]   BAND-STRUCTURE AND CLUSTER-MODEL CALCULATIONS OF LACOO(3) IN THE LOW-SPIN PHASE [J].
ABBATE, M ;
POTZE, R ;
SAWATZKY, GA ;
FUJIMORI, A .
PHYSICAL REVIEW B, 1994, 49 (11) :7210-7218
[2]   ELECTRONIC-STRUCTURE AND SPIN-STATE TRANSITION OF LACOO3 [J].
ABBATE, M ;
FUGGLE, JC ;
FUJIMORI, A ;
TJENG, LH ;
CHEN, CT ;
POTZE, R ;
SAWATZKY, GA ;
EISAKI, H ;
UCHIDA, S .
PHYSICAL REVIEW B, 1993, 47 (24) :16124-16130
[3]   Materials development for intermediate-temperature solid oxide electrochemical devices [J].
Aguadero, Ainara ;
Fawcett, Lydia ;
Taub, Samuel ;
Woolley, Russell ;
Wu, Kuan-Ting ;
Xu, Ning ;
Kilner, John A. ;
Skinner, Stephen J. .
JOURNAL OF MATERIALS SCIENCE, 2012, 47 (09) :3925-3948
[4]  
Aliabad HAR, 2013, PHYSICA B, V410, P112, DOI [10.1016/j.physb.2012.002, 10.1016/j.physb.2012.11.002]
[5]   Gadolinium-Vacancy Clusters in the (111) Surface of Gadolinium-Doped Ceria: A Density Functional Theory Study [J].
Aparicio-Angles, Xavier ;
Roldan, Alberto ;
de Leeuw, Nora H. .
CHEMISTRY OF MATERIALS, 2015, 27 (23) :7910-7917
[6]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[7]   VARIATION OF OPTICAL GAPS IN PEROVSKITE-TYPE 3D TRANSITION-METAL OXIDES [J].
ARIMA, T ;
TOKURA, Y ;
TORRANCE, JB .
PHYSICAL REVIEW B, 1993, 48 (23) :17006-17009
[8]   Two spin-state transitions in LaCoO3 [J].
Asai, K ;
Yoneda, A ;
Yokokura, O ;
Tranquada, JM ;
Shirane, G .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (01) :290-296
[9]   Electric transport and magnetic properties of perovskites LaMn1-xCoxO3 up to 900 K [J].
Autret, C ;
Hejtmánek, J ;
Knízek, K ;
Marysko, M ;
Jirák, Z ;
Dlouhá, M ;
Vratislav, S .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (10) :1601-1616
[10]   Stability of solid oxide fuel cell components [J].
Badwal, SPS .
SOLID STATE IONICS, 2001, 143 (01) :39-46