New conservative difference schemes with fourth-order accuracy for some model equation for nonlinear dispersive waves

被引:78
作者
Ghiloufi, Ahlem [1 ]
Omrani, Khaled [1 ]
机构
[1] Inst Super Sci Appl & Technol Sousse, Sousse Ibn Khaldoun 4003, Tunisia
关键词
shallow water waves; Rosenau-RLW-KdV equation; compact difference scheme; solvability; solitary wave solutions; fourth-order accuracy; KDV-RLW EQUATION; POWER-LAW NONLINEARITY; SHOCK-WAVES; ROSENAU; SOLITONS; COMPACT; CONVERGENCE; DYNAMICS;
D O I
10.1002/num.22208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, some high-order accurate difference schemes of dispersive shallow water waves with Rosenau-KdV-RLW-equation are presented. The corresponding conservative quantities are discussed. Existence of the numerical solution has been shown. A priori estimates, convergence, uniqueness, and stability of the difference schemes are proved. The convergence order is O(h(4) + k(2)) in the uniform norm without any restrictions on the mesh sizes. At last numerical results are given to support the theoretical analysis.
引用
收藏
页码:451 / 500
页数:50
相关论文
共 45 条
[1]   Solitary Wave Solutions for Generalized Rosenau-KdV Equation [J].
Amin, Esfahani .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (03) :396-398
[2]   Adiabatic parameter dynamics of perturbed solitary waves [J].
Antonova, Mariana ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) :734-748
[3]   A new conservative high-order accurate difference scheme for the Rosenau equation [J].
Atouani, Noureddine ;
Omrani, Khaled .
APPLICABLE ANALYSIS, 2015, 94 (12) :2435-2455
[4]   On the convergence of conservative difference schemes for the 2D generalized Rosenau-Korteweg de Vries equation [J].
Atouani, Noureddine ;
Omrani, Khaled .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 :832-847
[5]   Galerkin finite element method for the Rosenau-RLW equation [J].
Atouani, Noureddine ;
Omrani, Khaled .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :289-303
[6]   Solitary waves and conservation laws of Bona-Chen equations [J].
Biswas, A. ;
Krishnan, E. V. ;
Suarez, P. ;
Kara, A. H. ;
Kumar, S. .
INDIAN JOURNAL OF PHYSICS, 2013, 87 (02) :169-175
[7]   Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity [J].
Biswas, A. ;
Triki, H. ;
Labidi, M. .
PHYSICS OF WAVE PHENOMENA, 2011, 19 (01) :24-29
[8]   Solitons, Shock Waves, Conservation Laws and Bifurcation Analysis of Boussinesq Equation with Power Law Nonlinearity and Dual Dispersion [J].
Biswas, Anjan ;
Song, Ming ;
Triki, Houria ;
Kara, Abdul H. ;
Ahmed, Bouthina S. ;
Strong, Andre ;
Hama, Amadou .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (03) :949-957
[9]  
Browder F. E., 1965, P S APPL MATH AMS PR, V17, p[24, 1965]
[10]  
Chung S. K., 1994, Appl. Anal., V54, P39