Sex-dependent effects on the gut microbiota and host metabolome in type 1 diabetic mice

被引:10
作者
Zhang, Xi [1 ,2 ]
Wang, Die [2 ]
Zheng, Yafei [2 ]
Tu, Yingxin [2 ]
Xu, Qingqing [2 ]
Jiang, Haowei [2 ]
Li, Chen [2 ]
Zhao, Liangcai [2 ]
Li, Yuping [1 ]
Zheng, Hong [1 ,2 ]
Gao, Hongchang [1 ,2 ]
机构
[1] Wenzhou Med Univ, Dept Pulm & Crit Care Med, Affiliated Hosp 1, Wenzhou 325015, Peoples R China
[2] Wenzhou Med Univ, Inst Metabon & Med NMR, Sch Pharmaceut Sci, Wenzhou 325035, Peoples R China
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 2021年 / 1867卷 / 12期
基金
中国国家自然科学基金;
关键词
Correlation network; Diabetes; Sex difference; Microbiome; Metabolomics; AMINO-ACID-METABOLISM; AUTOIMMUNITY; DATABASE;
D O I
10.1016/j.bbadis.2021.166266
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sexual dimorphism exists in the onset and development of type 1 diabetes (T1D), but its potential pathological mechanism is poorly understood. In the present study, we examined sex-specific changes in the gut microbiome and host metabolome of T1D mice via 16S rRNA gene sequencing and nuclear magnetic resonance (NMR)-based metabolomics approach, and aimed to investigate potential mechanism of the gut microbiota-host metabolic interaction in the sexual dimorphism of T1D. Our results demonstrate that female mice had a greater shift in the gut microbiota than male mice during the development of T1D; however, host metabolome was more susceptible to T1D in male mice. The correlation network analysis indicates that T1D-induced host metabolic changes may be regulated by the gut microbiota in a sex-specific manner, mainly involving short-chain fatty acids (SCFAs) metabolism, energy metabolism, amino acid metabolism, and choline metabolism. Therefore, our study suggests that sex-dependent "gut microbiota-host metabolism axis" may be implicated in the sexual dimorphism of T1D, and the link between microbes and metabolites might contribute to the prevention and treatment of T1D.
引用
收藏
页数:12
相关论文
共 57 条
  • [1] Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts
    Ahola-Olli, Ari V.
    Mustelin, Linda
    Kalimeri, Maria
    Kettunen, Johannes
    Jokelainen, Jari
    Auvinen, Juha
    Puukka, Katri
    Havulinna, Aki S.
    Lehtimaki, Terho
    Kahonen, Mika
    Juonala, Markus
    Keinanen-Kiukaanniemi, Sirkka
    Salomaa, Veikko
    Perola, Markus
    Jarvelin, Marjo-Riitta
    Ala-Korpela, Mika
    Raitakari, Olli
    Wurtz, Peter
    [J]. DIABETOLOGIA, 2019, 62 (12) : 2298 - 2309
  • [2] Metabolic profiling of type 1 diabetes mellitus in children and adolescents: a case-control study
    Bervoets, Liene
    Massa, Guy
    Guedens, Wanda
    Louis, Evelyne
    Noben, Jean-Paul
    Adriaensens, Peter
    [J]. DIABETOLOGY & METABOLIC SYNDROME, 2017, 9
  • [3] Bhattacharya Suman, 2014, Int J Biomed Sci, V10, P8
  • [4] Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
    Bolyen, Evan
    Rideout, Jai Ram
    Dillon, Matthew R.
    Bokulich, NicholasA.
    Abnet, Christian C.
    Al-Ghalith, Gabriel A.
    Alexander, Harriet
    Alm, Eric J.
    Arumugam, Manimozhiyan
    Asnicar, Francesco
    Bai, Yang
    Bisanz, Jordan E.
    Bittinger, Kyle
    Brejnrod, Asker
    Brislawn, Colin J.
    Brown, C. Titus
    Callahan, Benjamin J.
    Caraballo-Rodriguez, Andres Mauricio
    Chase, John
    Cope, Emily K.
    Da Silva, Ricardo
    Diener, Christian
    Dorrestein, Pieter C.
    Douglas, Gavin M.
    Durall, Daniel M.
    Duvallet, Claire
    Edwardson, Christian F.
    Ernst, Madeleine
    Estaki, Mehrbod
    Fouquier, Jennifer
    Gauglitz, Julia M.
    Gibbons, Sean M.
    Gibson, Deanna L.
    Gonzalez, Antonio
    Gorlick, Kestrel
    Guo, Jiarong
    Hillmann, Benjamin
    Holmes, Susan
    Holste, Hannes
    Huttenhower, Curtis
    Huttley, Gavin A.
    Janssen, Stefan
    Jarmusch, Alan K.
    Jiang, Lingjing
    Kaehler, Benjamin D.
    Bin Kang, Kyo
    Keefe, Christopher R.
    Keim, Paul
    Kelley, Scott T.
    Knights, Dan
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (08) : 852 - 857
  • [5] Changes in hepatic metabolic profile during the evolution of STZ-induced diabetic rats via an 1H NMR-based metabonomic investigation
    Chen, Minjiang
    Zheng, Hong
    Xu, Min
    Zhao, Liangcai
    Zhang, Qianqian
    Song, Jingjing
    Zhao, Zhongwei
    Lu, Siming
    Weng, Qiaoyou
    Wu, Xulu
    Yang, Weibin
    Fan, Xiaoxi
    Gao, Hongchang
    Ji, Jiansong
    [J]. BIOSCIENCE REPORTS, 2019, 39
  • [6] de Groot P, 2021, GUT, V70, P92, DOI [10.1136/gutjnl-2020-322630, 10.1136/gutjnl-2020-323252]
  • [7] Leaky gut and diabetes mellitus: what is the link?
    de Kort, S.
    Keszthelyi, D.
    Masclee, A. A. M.
    [J]. OBESITY REVIEWS, 2011, 12 (06) : 449 - 458
  • [8] Age- and Sex-Dependent Patterns of Gut Microbial Diversity in Human Adults
    de La Cuesta-Zuluag, Jacobo
    Kelley, Scott T.
    Chen, Yingfeng
    Escobar, Juan S.
    Mueller, Noel T.
    Ley, Ruth E.
    McDonald, Daniel
    Huang, Shi
    Swafford, Austin D.
    Knight, Rob
    Thackray, Varykina G.
    [J]. MSYSTEMS, 2019, 4 (04)
  • [9] Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data
    Doncheva, Nadezhda T.
    Morris, John H.
    Gorodkin, Jan
    Jensen, Lars J.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2019, 18 (02) : 623 - 632
  • [10] Edgar RC, 2013, NAT METHODS, V10, P996, DOI [10.1038/NMETH.2604, 10.1038/nmeth.2604]