Selection criterion of a stable dendrite growth in rapid solidification

被引:36
作者
Alexandrov, D. V. [1 ]
Danilov, D. A. [2 ]
Galenko, P. K. [3 ]
机构
[1] Ural Fed Univ, Dept Math Phys, Ekaterinburg 620000, Russia
[2] Karlsruhe Inst Technol, Inst Nanotechnol INT, D-76344 Eggenstein Leopoldshafen, Germany
[3] Univ Jena, Phys Astron Fak, D-07743 Jena, Germany
基金
俄罗斯基础研究基金会;
关键词
Solidification; Interface; Crystal; Dendrite; Solute; Non-Fickian diffusion; CRYSTAL-GROWTH; PATTERN SELECTION; ASSISTED GROWTH; NEEDLE-CRYSTAL; BINARY ALLOY; MODEL; NANOSTRUCTURES; DIFFUSION; MELT; CONVECTION;
D O I
10.1016/j.ijheatmasstransfer.2016.05.085
中图分类号
O414.1 [热力学];
学科分类号
摘要
We present an analysis of a free dendrite growing in a binary mixture under non-isothermal conditions. The stable growth mode is analyzed through the solvability condition giving the stability criterion for the dendrite tip as a function of the thermal Peclet number, P-T, and ratio, W = V/V-D, of the dendrite velocity V and solute diffusion speed V-D in bulk liquid. We extend previous studies limited to small values of the Peclet numbers, by considering the effect of the anisotropy of surface energy for the needle-like dendrite growing at arbitrary Peclet numbers and under local non-equilibrium solute diffusion described by a hyperbolic type of transport equation. Transitions in growth regimes, namely, from solute diffusion limited to thermo-solutal regime and, finally, to pure thermally controlled regime of the anisotropic dendrite are derived and revealed. Limiting cases of known criteria for anisotropic dendrite growing at small and high growth Peclet numbers are provided. A comparison with the previously obtained criterion of marginal stability of rapidly growing dendrite is made. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:789 / 799
页数:11
相关论文
共 67 条
[51]   Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry [J].
Qin, Yao ;
Song, Yin ;
Sun, Nijuan ;
Zhao, Nana ;
Li, Meixian ;
Qi, Limin .
CHEMISTRY OF MATERIALS, 2008, 20 (12) :3965-3972
[52]  
Rudin W., 1973, FUNCTIONAL ANAL, Vsecond
[53]   Fundamentals of phase field theory [J].
Sekerka, RF .
ADVANCES IN CRYSTAL GROWTH RESEARCH, 2001, :21-41
[54]   One-Step Synthesis of Au-Pd Alloy Nanodendrites and Their Catalytic Activity [J].
Shi, Lihua ;
Wang, Aiqin ;
Zhang, Tao ;
Zhang, Bingsen ;
Su, Dangsheng ;
Li, Huanqiao ;
Song, Yujiang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (24) :12526-12536
[56]  
TEMKIN DE, 1960, DOKL AKAD NAUK SSSR+, V132, P1307
[57]   Phase-field simulations of dendritic crystal growth in a forced flow [J].
Beckermann, C. (becker@engineering.uiowa.edu), 2001, American Institute of Physics Inc. (63)
[58]  
TRIVEDI R, 1994, INT MATER REV, V39, P49, DOI 10.1179/095066094790326220
[59]   Dendritic nanostructures of silver: Facile synthesis, structural characterizations, and sensing applications [J].
Wen, XG ;
Xie, YT ;
Mak, WC ;
Cheung, KY ;
Li, XY ;
Renneberg, R ;
Yang, S .
LANGMUIR, 2006, 22 (10) :4836-4842
[60]   GRAIN-REFINEMENT INDUCED BY A CRITICAL CRYSTAL-GROWTH VELOCITY IN UNDERCOOLED MELTS [J].
WILLNECKER, R ;
HERLACH, DM ;
FEUERBACHER, B .
APPLIED PHYSICS LETTERS, 1990, 56 (04) :324-326