Controlling metallic Co0 in ZIF-67-derived N-C/Co composite catalysts for efficient photocatalytic CO2 reduction

被引:38
作者
Chen, Fei-Fei [1 ]
Chen, Jianfeng [1 ]
Feng, Ya-Nan [1 ]
Li, Lingyun [1 ]
Yu, Yan [1 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Key Lab Adv Mat Technol, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
ZIF-67; Co nanoparticles; N-doped C; photocatalysis; CO2; reduction; SYNGAS PRODUCTION; CARBON; SITES; NANOSHEETS; PHOTOREDUCTION; FRAMEWORKS; NANOBOXES; GRAPHENE; MOFS;
D O I
10.1007/s40843-021-1758-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An efficient photocatalytic CO2 reduction has been reported in ZIF-67-derived-Co nanoparticles (NPs) encapsulated in nitrogen-doped carbon layers (N-C/Co). This work demonstrates that the pyrolysis temperature is crucial in tuning the grain size and components of metallic Co-0 of N-C/Co composite catalysts, which optimizes their photocatalytic activities. Syntheses were conducted at 600, 700, and 800 degrees C giving the N-C/Co-600, N-C/Co-700, and N-C/Co-800 samples, respectively. N-C layers can well wrap the Co NPs obtained at a low pyrolysis temperature (600 degrees C) owing to their smaller grains than those of other samples. A high metallic Co-0 content in the N-C/Co-600 sample can be attributed to the effective inhibition of surface oxidation. By contrast, the surface CoOx oxides in the N-C/Co-700 and N-C/Co-800 samples cover inside Co cores, inhibiting charge separation and transfer. As a result, the N-C/Co-600 sample yields the best photocatalytic activity. The carbon monoxide and hydrogen generation rates are as high as 1.62 x 10(4) and 2.01 x 10(4) mu mol g(-1) h(-1), respectively. Additionally, the Co NPs make composite catalysts magnetic, enabling rapid and facile recovery of catalysts with the assistance of an external magnetic field. This work is expected to provide an instructive guideline for designing metal-organic framework-derived carbon/metal composite catalysts.
引用
收藏
页码:413 / 421
页数:9
相关论文
共 48 条
[1]   From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Liu, Xiaobo ;
Pu, Zonghua ;
Li, Wenqiang ;
Li, Qidong ;
Zhang, Jie ;
Tang, Haolin ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (05)
[2]   Design, Fabrication, and Mechanism of Nitrogen-Doped Graphene-Based Photocatalyst [J].
Bie, Chuanbiao ;
Yu, Huogen ;
Cheng, Bei ;
Ho, Wingkei ;
Fan, Jiajie ;
Yu, Jiaguo .
ADVANCED MATERIALS, 2021, 33 (09)
[3]   CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Gong, Jinlong .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) :2177-2196
[4]   Fire Alarm Wallpaper Based on Fire-Resistant Hydroxyapatite Nanowire Inorganic Paper and Graphene Oxide Thermosensitive Sensor [J].
Chen, Fei-Fei ;
Zhu, Ying-Jie ;
Chen, Feng ;
Dong, Li-Ying ;
Yang, Ri-Long ;
Xiong, Zhi-Chao .
ACS NANO, 2018, 12 (04) :3159-3171
[5]   Spatial distribution of ZnIn2S4 nanosheets on g-C3N4 microtubes promotes photocatalytic CO2 reduction [J].
Chen, Kaihang ;
Wang, Xuanwei ;
Li, Qiuyun ;
Feng, Ya-Nan ;
Chen, Fei-Fei ;
Yu, Yan .
CHEMICAL ENGINEERING JOURNAL, 2021, 418
[6]   Recycling heavy metals from wastewater for photocatalytic CO2 reduction [J].
Chen, Linnan ;
Wang, Xuanwei ;
Chen, Yawen ;
Zhuang, Zanyong ;
Chen, Fei-Fei ;
Zhu, Ying-Jie ;
Yu, Yan .
CHEMICAL ENGINEERING JOURNAL, 2020, 402
[7]   Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction [J].
Chen, Weiyi ;
Han, Bin ;
Xie, Yili ;
Liang, Shujie ;
Deng, Hong ;
Lin, Zhang .
CHEMICAL ENGINEERING JOURNAL, 2020, 391
[8]   MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction [J].
Chen, Weiyi ;
Han, Bin ;
Tian, Chen ;
Liu, Xueming ;
Liang, Shujie ;
Deng, Hong ;
Lin, Zhang .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 244 :996-1003
[9]   Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction [J].
Chen, Ziliang ;
Wu, Renbing ;
Liu, Yang ;
Ha, Yuan ;
Guo, Yanhui ;
Sun, Dalin ;
Liu, Miao ;
Fang, Fang .
ADVANCED MATERIALS, 2018, 30 (30)
[10]   Cubic imidazolate frameworks-derived CoFe alloy nanoparticles-embedded N-doped graphitic carbon for discharging reaction of Zn-air battery [J].
Du, Ziyu ;
Yu, Peng ;
Wang, Lei ;
Tian, Chungui ;
Liu, Xu ;
Zhang, Guangying ;
Fu, Honggang .
SCIENCE CHINA-MATERIALS, 2020, 63 (03) :327-338