Separation Performance of Graphene Oxide Membrane in Aqueous Solution

被引:115
作者
An, Di [1 ]
Yang, Ling [1 ]
Wang, Ting-Jie [1 ]
Liu, Boyang [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
EXFOLIATED GRAPHITE OXIDE; CHEMICAL-REDUCTION; ELECTRICAL-CONDUCTIVITY; MECHANICAL-PROPERTIES; MONOLAYER GRAPHENE; WATER PERMEATION; BARRIER FILMS; CROSS-LINKING; GAS BARRIER; VITAMIN-C;
D O I
10.1021/acs.iecr.6b00620
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Graphene oxide (GO) is a type of two-dimensional nanomaterial with a single-atom thickness. GO sheets contain pristine regions, oxidized regions, and a small fraction of holes. By stacking GO sheets together, a GO membrane can be fabricated with sufficient mechanical strength. The interlayer nanocapillary network formed from connected interlayer spaces, together with the gaps between the edges of noninterlocked neighboring GO sheets and cracks or holes of the GO sheet, provides passage for molecules or ions to permeate through the GO membrane in an aqueous solution. The characteristics of molecules or ions (e.g., their size, charge, and the interaction with the GO membrane) affect the separation performance of the GO membrane. The contribution of gaps between neighboring GO sheets for separation can be adjusted by changing the GO sheet size and the GO membrane thickness. The interlayer space of the GO membrane can be adjusted by changing the water pH and modifying or reducing the GO sheets to obtain the desired separation performance. The production of the GO membrane is easily scalable and relatively inexpensive, indicating that the GO membrane has promising potential for applications such as water treatment, desalination, anticorrosion, chemical resistance, and controlled release coatings.
引用
收藏
页码:4803 / 4810
页数:8
相关论文
共 81 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Impermeability of graphene and its applications [J].
Berry, Vikas .
CARBON, 2013, 62 :1-10
[3]   Origin of Anomalous Water Permeation through Graphene Oxide Membrane [J].
Boukhvalov, Danil W. ;
Katsnelson, Mikhail I. ;
Son, Young-Woo .
NANO LETTERS, 2013, 13 (08) :3930-3935
[4]  
Brodie B.C., 1860, PHILOS T R SOC LONDO, V149, P249, DOI [10.1098/rspl.1859.0007, DOI 10.1098/RSTL.1859.0013]
[5]   Water dynamics in graphite oxide investigated with neutron scattering [J].
Buchsteiner, Alexandra ;
Lerf, Anton ;
Pieper, Joerg .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45) :22328-22338
[6]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[7]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[8]   Chemical reduction of graphene oxide: a synthetic chemistry viewpoint [J].
Chua, Chun Kiang ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (01) :291-312
[9]   Diffusive transport of two charge equivalent and structurally similar ruthenium complex ions through graphene oxide membranes [J].
Coleman, Michael ;
Tang, Xiaowu .
NANO RESEARCH, 2015, 8 (04) :1128-1138
[10]   Electrically Conductive "Alkylated" Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper [J].
Compton, Owen C. ;
Dikin, Dmitriy A. ;
Putz, Karl W. ;
Brinson, L. Catherine ;
Nguyen, SonBinh T. .
ADVANCED MATERIALS, 2010, 22 (08) :892-+