Study on the Imbibition Damage Mechanisms of Fracturing Fluid for the Whole Fracturing Process in a Tight Sandstone Gas Reservoir

被引:8
|
作者
Xu, Dongjin [1 ]
Chen, Shihai [2 ]
Chen, Jinfeng [3 ]
Xue, Jinshan [3 ]
Yang, Huan [4 ]
机构
[1] Yangtze Univ, Key Lab Explorat Technol Oil & Gas Resources, Minist Educ, Wuhan 430100, Peoples R China
[2] Shaanxi Yanan Oil & Nat Gas Corp Ltd, Xian 710018, Peoples R China
[3] Petrochina Huabei Oilfield Co, Oil Prod Plant 4, Langfang 065000, Peoples R China
[4] Univ Wyoming, Coll Engn & Appl Sci, Dept Petr Engn, Laramie, WY 82071 USA
基金
中国国家自然科学基金;
关键词
tight sandstone gas; low-field Nuclear Magnetic Resonance; linxing gas field; imbibition damage; imbibition experiment;
D O I
10.3390/en15124463
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tight sandstone gas is a significant unconventional natural gas resource, and has been exploited economically mostly through the application of hydraulic fracturing technology in recent decades. However, formation damage occurs when fracturing fluid percolates into the pores inside sandstones through imbibition driven by capillary pressure during fracturing operations. In this work, the formation damage resulting from the whole operation process composed of fracturing, well shut-in and flowback, and the degree of damage at different moments were investigated through core flow experiments and the low-field Nuclear Magnetic Resonance (NMR) technique. The results show that imbibition damage occurs starting from the contact surface between the formation and the fracturing fluid, which penetrates into an increasingly deep position with time down to a certain depth. The T2 spectra of NMR at different moments indicates that fracturing fluid initially enters the small pores, followed by the large pores due to the larger capillary pressure in the former. Thus, the sandstone cores with low permeability incur a higher degree of damage due to their stronger capability of retaining fracturing fluid compared to high-permeability cores. The front position of the fracturing fluid imbibition at different moments, along with the degree of damage, were characterized through the one-dimensional encoding processing of the NMR signal. These results underlie the effective strategy to relieve formation damage resulting from imbibition during hydraulic fracturing operations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Imbibition Characteristics and Influencing Factors of the Fracturing Fluid in a Tight Sandstone Reservoir
    Li, Tian
    Ren, Dazhong
    Sun, Haipeng
    Wang, Hu
    Tian, Tao
    Li, Qihui
    Yan, Zhen
    ACS OMEGA, 2024, 9 (15): : 17204 - 17216
  • [2] Influencing Factors and Application of Spontaneous Imbibition of Fracturing Fluids in Tight Sandstone Gas Reservoir
    Zhang, Xueping
    Liu, Youquan
    Liu, Yuzhou
    Zhong, Chuanrong
    ACS OMEGA, 2022, : 38912 - 38922
  • [3] Study on Matrix Damage and Control Methods of Fracturing Fluid on Tight Sandstone Gas Reservoirs
    Zhang, Xueping
    Liu, Youquan
    Zhou, Lang
    Zhong, Chuanrong
    Zhang, Pengfei
    ACS OMEGA, 2023, 8 (40): : 37461 - 37470
  • [4] The damage mechanisms of fracturing fluid on production in tight gas reservoirs
    Li, Yang
    Guo, Jianchun
    Wang, Shibin
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5988 - 5993
  • [5] Experimental Simulation on Imbibition of the Residual Fracturing Fluid in Tight Sandstone Reservoirs
    Ren, Xiaoxia
    Li, Aifen
    Memon, Asadullah
    Fu, Shuaishi
    Wang, Guijuan
    He, Bingqing
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (08):
  • [6] Microscopic mechanism of fracturing fluid imbibition in stimulated tight oil reservoir
    Zheng, Heng
    Liao, Ruiquan
    Cheng, Ning
    Shi, Shanzhi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 202
  • [7] Study on the damage and control method of fracturing fluid to tight reservoir matrix
    Fu, Lipei
    Liao, Kaili
    Ge, Jijiang
    Huang, Weiqiu
    Chen, Lifeng
    Sun, Xianhang
    Zhang, Shifeng
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 82
  • [8] Quantitatively study on imbibition of fracturing fluid in tight sandstone reservoir under high temperature and high pressure based on NMR technology
    Xu, Runzi
    Yang, Shenglai
    Xiao, Zhipeng
    Jin, Yijie
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [9] Salt Ion Diffusion Behavior and Adsorption Characteristics of Fracturing Fluid in Tight Sandstone Gas Reservoir
    Zhang, Xueping
    Liu, Youquan
    Liu, Yuzhou
    Zhong, Chuanrong
    Zhang, Pengfei
    ENERGIES, 2023, 16 (06)
  • [10] Imbibition Retention in the Process of Fluid Replacement in Tight Sandstone Reservoir
    Liu, Xiong
    Zhang, Yang
    Zhou, Desheng
    Yan, Le
    Huang, Hai
    Li, Xinru
    GEOFLUIDS, 2022, 2022