A geometrical optics-based numerical method for high frequency electromagnetic fields computations near fold caustics - Part I

被引:23
作者
Benamou, JD
Lafitte, O
Sentis, R
Solliec, I
机构
[1] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
[2] Univ Paris 13, Dept Math, F-93430 Villetaneuse, France
[3] CEA, DCSA, F-91680 Bruyeres Le Chatel, France
关键词
Hamilton-Jacobi; Hamiltonian system; ray tracing; viscosity solution; upwind scheme; geometric optics; Eave equation; laser; plasma; electromagnetism;
D O I
10.1016/S0377-0427(02)00907-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an Eulerian numerical method for the computation of a bi-valued solution of Hamilton-Jacobi type equation in a particular geometric setting. More precisely we consider high frequency electromagnetic fields in the vicinity of fold caustics. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:93 / 125
页数:33
相关论文
共 52 条
[1]  
Abgrall R, 1996, COMMUN PUR APPL MATH, V49, P1339, DOI 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO
[2]  
2-B
[3]   Big ray-tracing and eikonal solver on unstructured grids: Application to the computation of a multivalued traveltime field in the Marmousi model [J].
Abgrall, R ;
Benamou, JD .
GEOPHYSICS, 1999, 64 (01) :230-239
[4]  
[Anonymous], 1969, LECT CALCULUS VARIAT
[5]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[6]  
Arnold V.I, 2003, Catastrophe Theory
[7]  
ARNOLD VI, 1986, SINGULARITIES DIFFER
[8]  
Barles G., 1994, Solutions de viscosite des equations de Hamilton-Jacobi, V17
[9]   Big ray tracing: Multivalued travel time field computation using viscosity solutions of the eikonal equation [J].
Benamou, JD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 128 (02) :463-474
[10]  
Benamou JD, 1999, COMMUN PUR APPL MATH, V52, P1443, DOI 10.1002/(SICI)1097-0312(199911)52:11<1443::AID-CPA3>3.0.CO