Electrochemical Conversion of Silica Nanoparticles to Silicon Nanotubes in Molten Salts: Implications for High-Performance Lithium-Ion Battery Anode

被引:32
作者
Wang, Fan [1 ]
Ma, Yongsong [1 ]
Li, Peng [1 ]
Peng, Chuang [1 ]
Yin, Huayi [2 ]
Li, Wei [1 ]
Wang, Dihua [1 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China
[2] Northeastern Univ, Key Lab Ecol Met Multimet Mineral, Minist Educ, Sch Met, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
deoxidation; silicon nanotubes; molten salt electrolysis; SiO2; lithium-ion batteries; CRYSTALLINE SILICON; SI NANOTUBES; NANOWIRES; NANOSTRUCTURES; REDUCTION; DISCHARGE;
D O I
10.1021/acsanm.1c01061
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Understanding the material formation mechanism is critical to guide the material synthesis and exploitation. Herein, we reveal a different conversion mechanism of SiO2 particles to Si nanotubes (SNTs) in the molten salt electrolysis. Unlike conventional strategies employing templates and/or catalysts, the one-step electrochemical synthesis is template- and catalyst-free, which process involves lamination, exfoliation, and reduction. Specifically, SiO2 particles are first converted into layer-structured CaSiO3, from which CaO and O2- are subsequently extracted, causing the collapse of the layer structure and forming SiOx (0 < x < 2) layers. The newly formed SiOx layers are finally deeply reduced into SNTs. Besides, the morphology of silicon-based nanostructures can be controlled via altering the applied voltage between a SiO2 cathode and a graphite anode. In addition, the electrolytic SNTs show enhanced lithium-storage performances, such as a high specific capacity (2485 mAh g(-1) at 0.2 A g(-1)) and an excellent rate capability (1362 mAh g(-1) at 5 A g(-1)), which is benefited from the tube structure that can buffer the volume variation of Si. Overall, the revealed conversion mechanism will shed light on designing advanced Si-based nanomaterials for various applications.
引用
收藏
页码:7028 / 7036
页数:9
相关论文
共 41 条
[1]   Crystal Structure Transfer in Core/Shell Nanowires [J].
Algra, Rienk E. ;
Hocevar, Moira ;
Verheijen, Marcel A. ;
Zardo, Ilaria ;
Immink, George G. W. ;
van Enckevort, Willem J. P. ;
Abstreiter, Gerhard ;
Kouwenhoven, Leo P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NANO LETTERS, 2011, 11 (04) :1690-1694
[2]   Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes [J].
An, Weili ;
Gao, Biao ;
Mei, Shixiong ;
Xiang, Ben ;
Fu, Jijiang ;
Wang, Lei ;
Zhang, Qiaobao ;
Chu, Paul K. ;
Huo, Kaifu .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Shape- and Dimension-Controlled Single-Crystalline Silicon and SiGe Nanotubes: Toward Nanofluidic FET Devices [J].
Ben Ishai, Moshit ;
Patolsky, Fernando .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (10) :3679-3689
[4]  
CHASSAN JB, 1963, PSYCHIATR, V26, P391
[5]   Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium Ion Batteries [J].
Chen, Yu ;
Liu, Lifeng ;
Xiong, Jie ;
Yang, Tingzhou ;
Qin, Yong ;
Yan, Chenglin .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (43) :6701-6709
[6]   Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers [J].
Convertino, Annalisa ;
Cuscuna, Massimo ;
Martelli, Faustino .
NANOTECHNOLOGY, 2012, 23 (30)
[7]   Formation of Si Hollow Structures as Promising Anode Materials through Reduction of Silica in AlCl3-NaCl Molten Salt [J].
Gao, Peibo ;
Huang, Xi ;
Zhao, Yuting ;
Hu, Xudong ;
Cen, Dingcheng ;
Gao, Guohua ;
Bao, Zhihao ;
Mei, Yongfeng ;
Di, Zengfeng ;
Wu, Guangming .
ACS NANO, 2018, 12 (11) :11481-11490
[8]  
Girard S. N., 2017, ANGEW CHEM INT EDIT, V129, P14645
[9]   Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates [J].
Hu, JQ ;
Bando, Y ;
Liu, ZW ;
Zhan, JH ;
Golberg, D ;
Sekiguchi, T .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (01) :63-66
[10]   Morphology Control of Nanotube Arrays [J].
Huang, Zhifeng ;
Harris, Kenneth D. ;
Brett, Michae J. .
ADVANCED MATERIALS, 2009, 21 (29) :2983-+