Sparse representation-based joint angle and Doppler frequency estimation for MIMO radar

被引:20
作者
Li, Jianfeng [1 ]
Zhang, Xiaofei [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Elect Engn, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Panda Elect Grp, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Multiple-input multiple-output (MIMO) radar; Angle estimation; Sparse representation; Doppler frequency; DOA ESTIMATION; SIGNAL RECONSTRUCTION; PARAMETER-ESTIMATION; ESPRIT; ALGORITHM; LOCALIZATION; DIRECTION; RECOVERY;
D O I
10.1007/s11045-013-0248-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An algorithm based on sparse representation for joint angle and Doppler frequency estimation in multiple-input multiple-output radar is proposed. Through the data reconstruction, the algorithm only requires the dictionary for one-dimensional angle [e.g. direction of departure (DOD)], which reduces the computational complexity compared to conventional method using dictionary for two-dimensional angle. The DOD can be estimated by finding the non-zero rows in the recovered matrix, which also contains the information of the direction of arrival (DOA) and the Doppler frequency, and they can be achieved via singular value decomposition and least squares (LS) principle. The estimated DOD, DOA and Doppler frequency can be automatically paired and the parameter estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT)-based algorithm and parallel factor (PARAFAC) method. Furthermore, the proposed algorithm requires no knowledge of the number of targets and works well for coherent targets. Simulation results verify the effectiveness of the algorithm.
引用
收藏
页码:179 / 192
页数:14
相关论文
共 34 条
[1]  
[Anonymous], 2007, SPGL1 SOLVER LARGE S
[2]   Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar [J].
Bencheikh, M. L. ;
Wang, Y. .
ELECTRONICS LETTERS, 2010, 46 (15) :1081-1082
[3]   Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar [J].
Bencheikh, Mohamed Laid ;
Wang, Yide ;
He, Hongyang .
SIGNAL PROCESSING, 2010, 90 (09) :2723-2730
[4]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[5]   Signal Processing With Compressive Measurements [J].
Davenport, Mark A. ;
Boufounos, Petros T. ;
Wakin, Michael B. ;
Baraniuk, Richard G. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) :445-460
[6]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[7]   Angle estimation using ESPRIT in MIMO radar [J].
Duofang, C. ;
Baixiao, C. ;
Guodong, Q. .
ELECTRONICS LETTERS, 2008, 44 (12) :770-770
[8]   MIMO radar: An idea whose time has come [J].
Fishler, E ;
Haimovich, A ;
Blum, R ;
Chizhik, D ;
Cimini, L ;
Valenzuela, R .
PROCEEDINGS OF THE IEEE 2004 RADAR CONFERENCE, 2004, :71-78
[9]   Source localization using a sparse representation framework to achieve superresolution [J].
Guo, Xiansheng ;
Wan, Qun ;
Chang, Chunqi ;
Lam, Edmund Y. .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2010, 21 (04) :391-402
[10]   A sparse recovery algorithm for DOA estimation using weighted subspace fitting [J].
Hu, Nan ;
Ye, Zhongfu ;
Xu, Dongyang ;
Cao, Shenghong .
SIGNAL PROCESSING, 2012, 92 (10) :2566-2570