Complementary Effect of Ti and Ni Incorporation in Improving the Electrochemical Performance of a Layered Sodium Manganese Oxide Cathode for Sodium-Ion Batteries

被引:26
作者
Li, Zheng-Yao [1 ]
Ma, Xiaobai [1 ]
Guo, Hao [1 ]
He, Linfeng [1 ]
Li, Yuqing [1 ]
Wei, Guohai [1 ]
Sun, Kai [1 ]
Chen, Dongfeng [1 ]
机构
[1] China Inst Atom Energy, Dept Nucl Phys, Neutron Scattering Lab, Beijing 102413, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2021年 / 4卷 / 06期
关键词
layered manganese oxide; neutron diffraction; Ti substitution; Ni doping; cathode material; sodium-ion battery; HIGH-ENERGY; HIGH-POWER; IN-SITU; POSITIVE ELECTRODE; HIGH-CAPACITY; P2-TYPE; SUBSTITUTION; PHASE; CYCLABILITY; REDOX;
D O I
10.1021/acsaem.1c00527
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploiting high-performance cathodes is still in need for sodium-ion batteries, which is critical to promote their commercialization. Layered sodium manganese oxide cathodes show low cost and natural abundance but suffer from poor cycling life and rate capacity. Herein, electrochemically inert Ti4+ and active Ni2+ are used to replace some Mn ions in Na0.62MnO2, and neutron power diffraction results demonstrate a negligible change in the sizes of the metal layer and Na-ion layer in the structure. Although Na-0.62[Ni0.12Ti0.12Mn0.76]O-2 and Na0.62MnO2 share the same Na content in pristine materials and theoretical capacity, the improved performance of Na-0.62[Ni0.12Ti0.12Mn0.76]O-2 stems from the suppressed phase transitions and ordering process, alleviated Jahn-Teller distortion, and a high Na utilization of 73.8% compared with 62.2% for Na0.62MnO2. Ti4+ stabilizes the crystal structure and hinders the multiple phase transitions and Na+/vacancy ordering upon cycling, and Ni2+ improves the working voltage and compensates the capacity loss associated with decreased Mn3+ content. Na-0.62[Ni0.12Ti0.12Mn0.76]O-2 exhibits an average working voltage of about 3.5 V, a great rate capability, and cycling stability of 76.8% capacity retention after 120 cycles in the voltage range of 2.5-4.5 V. The work offers an insight into enhancing advanced layered sodium manganese oxide cathode materials for sodium-ion batteries.
引用
收藏
页码:5687 / 5696
页数:10
相关论文
共 56 条
[1]  
Bard A. J, 2000, ELECTROCHEMICAL METH, V2nd, P230
[2]   Layered NaxMnO2+z in Sodium Ion Batteries-Influence of Morphology on Cycle Performance [J].
Bucher, Nicolas ;
Hartung, Steffen ;
Nagasubramanian, Arun ;
Cheah, Yan Ling ;
Hoster, Harry E. ;
Madhavi, Srinivasan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (11) :8059-8065
[3]   Mg-doping for improved long-term cyclability of layered Na-ion cathode materials - The example of P2-type NaxMg0.11Mn0.89O2 [J].
Buchholz, Daniel ;
Vaalma, Christoph ;
Chagas, Luciana Gomes ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2015, 282 :581-585
[4]   Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells [J].
Caballero, A ;
Hernán, L ;
Morales, J ;
Sánchez, L ;
Peña, JS ;
Aranda, MAG .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (04) :1142-1147
[5]   Cu2+ Dual-Doped Layer-Tunnel Hybrid Na0.6Mn1-xCuxO2 as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability [J].
Chen, Ting-Ru ;
Sheng, Tian ;
Wu, Zhen-Guo ;
Li, Jun-Tao ;
Wang, En-Hui ;
Wu, Chun-Jin ;
Li, Hong-Tai ;
Guo, Xiao-Dong ;
Zhong, Ben-He ;
Huang, Ling ;
Sung, Shi-Gang .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (12) :10147-10156
[6]   Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries [J].
Chen, Xiaoqing ;
Zhou, Xianlong ;
Hu, Meng ;
Liang, Jing ;
Wu, Dihua ;
Wei, Jinping ;
Zhou, Zhen .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) :20708-20714
[7]   Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies [J].
Clement, Raphaele J. ;
Billaud, Juliette ;
Armstrong, A. Robert ;
Singh, Gurpreet ;
Rojo, Teofilo ;
Bruce, Peter G. ;
Grey, Clare P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3240-3251
[8]   Side by Side Battery Technologies with Lithium-Ion Based Batteries [J].
Durmus, Yasin Emre ;
Zhang, Huang ;
Baakes, Florian ;
Desmaizieres, Gauthier ;
Hayun, Hagay ;
Yang, Liangtao ;
Kolek, Martin ;
Kuepers, Verena ;
Janek, Juergen ;
Mandler, Daniel ;
Passerini, Stefano ;
Ein-Eli, Yair .
ADVANCED ENERGY MATERIALS, 2020, 10 (24)
[9]   Sodium manganese-rich layered oxides: Potential candidates as positive electrode for Sodium-ion batteries [J].
Gonzalo, Elena ;
Zarrabeitia, Maider ;
Drewett, Nicholas E. ;
Lopez del Amo, Juan Miguel ;
Rojo, Teofilo .
ENERGY STORAGE MATERIALS, 2021, 34 (34) :682-707
[10]   Exploring the rate dependence of phase evolution in P2-type Na2/3Mn0.8Fe0.1Ti0.1O2 [J].
Goonetilleke, Damian ;
Wang, Sunny ;
Gonzalo, Elena ;
Galceran, Montserrat ;
Saurel, Damien ;
Day, Sarah J. ;
Fauth, Francois ;
Rojo, Teofilo ;
Sharma, Neeraj .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (19) :12115-12125