Self-consistent large-N analytical solutions of inhomogeneous condensates in quantum CPN-1 model

被引:19
作者
Nitta, Muneto [1 ,2 ]
Yoshii, Ryosuke [2 ]
机构
[1] Keio Univ, Dept Phys, 4-1-1 Hiyoshi, Yokohama, Kanagawa 2238521, Japan
[2] Keio Univ, Res & Educ Ctr Nat Sci, 4-1-1 Hiyoshi, Yokohama, Kanagawa 2238521, Japan
基金
日本学术振兴会;
关键词
1/N Expansion; Field Theories in Lower Dimensions; Sigma Models; SEMICLASSICAL BOUND-STATES; NONLINEAR SIGMA-MODEL; NON-ABELIAN VORTICES; GROSS-NEVEU; DYNAMICAL MODEL; HIGGS PHASE; SOLITONS; PARTICLES; SUPERCONDUCTIVITY; DIMENSIONS;
D O I
10.1007/JHEP12(2017)145
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We give, for the first time, self-consistent large-N analytical solutions of inhomogeneous condensates in the quantum CPN-1 model in the large-N limit. We find a map from a set of gap equations of the CPN-1 model to those of the Gross-Neveu (GN) model (or the gap equation and the Bogoliubov-de Gennes equation), which enables us to find the self-consistent solutions. We find that the Higgs field of the CPN-1 model is given as a zero mode of solutions of the GN model, and consequently only topologically nontrivial solutions of the GN model yield nontrivial solutions of the CPN-1 model. A stable single soliton is constructed from an anti-kink of the GN model and has a broken (Higgs) phase inside its core, in which CPN-1 modes are localized, with a symmetric (con fi ning) phase outside. We further find a stable periodic soliton lattice constructed from a real kink crystal in the GN model, while the Ablowitz-Kaup-Newell-Segur hierarchy yields multiple solitons at arbitrary separations.
引用
收藏
页数:17
相关论文
共 94 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   QUANTUM SPIN CHAINS AND THE HALDANE GAP [J].
AFFLECK, I .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (19) :3047-3072
[3]  
[Anonymous], hep:th/0002222
[4]   Nonabelian superconductors:: vortices and confinement in N=2 SQCD [J].
Auzzi, R ;
Bolognesi, S ;
Evslin, J ;
Konishi, K ;
Yung, A .
NUCLEAR PHYSICS B, 2003, 673 (1-2) :187-216
[5]   PHASE-TRANSITION IN NONLINEAR SIGMA MODEL IN A (2+ EPSILON-DIMENSIONAL CONTINUUM [J].
BARDEEN, WA ;
LEE, BW ;
SHROCK, RE .
PHYSICAL REVIEW D, 1976, 14 (04) :985-1005
[6]   Inhomogeneous condensates in the thermodynamics of the chiral NJL2 model [J].
Basar, Goekce ;
Dunne, Gerald V. ;
Thies, Michael .
PHYSICAL REVIEW D, 2009, 79 (10)
[7]   Twisted kink crystal in the chiral Gross-Neveu model [J].
Basar, Goekce ;
Dunne, Gerald V. .
PHYSICAL REVIEW D, 2008, 78 (06)
[8]   Self-consistent crystalline condensate in chiral Gross-Neveu and Bogoliubov-de Gennes systems [J].
Basar, Goekce ;
Dunne, Gerald V. .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)
[9]   Large-N CPN - 1 sigma model on a finite interval [J].
Bolognesi, Stefano ;
Konishi, Kenichi ;
Ohashi, Keisuke .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10)
[10]  
BRAZOVSKII SA, 1980, JETP LETT+, V31, P456