Iron oxide/carbon microsphere lithium-ion battery electrode with high capacity and good cycling stability

被引:31
作者
Li, Meng-Yuan [1 ]
Wang, Yan [1 ]
Liu, Chun-Ling [1 ]
Gao, Hao [1 ]
Dong, Wen-Sheng [1 ]
机构
[1] Shaanxi Normal Univ, Key Lab Appl Surface & Colloid Chem SNNU, MOE, Sch Chem & Chem Engn, Xian 710062, Peoples R China
关键词
Lithium ion battery; Anode; Iron oxide; Carbon; Microspheres; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; GAS SENSOR; ALPHA-FE2O3; NANOCOMPOSITE; COMPOSITE; SIZE;
D O I
10.1016/j.electacta.2012.02.015
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Iron oxide/carbon composite microspheres were prepared by a simple solution polymerization followed by pyrolysis in flowing nitrogen atmosphere at high temperature. The composites were characterized using various characterization techniques including powder X-ray diffraction, high resolution transmission electron microscopy, scanning electron microscopy, N-2 physical adsorption and the electrochemical performance test. The results show that the iron oxide/carbon composites consist of uniform microspheres with an average diameter of similar to 2.1 mu m. These iron oxide/carbon composite microspheres exhibit high capacity and good cycle stability when used as a lithium-ion battery anode. When the iron oxide content is 66%, the composite reveals the best electrochemical performance with an initial charge capacity of 730 mAh g(-1) and even after ninety cycles the electrode still maintains a capacity of 664 mAh g(-1), giving high capacity retention of 91%. The good electrochemical performance of the composite anode is close related with its structure, in which Fe2O3 particles are uniformly dispersed in the spherical carbon matrix; hence the volume change and aggregation of the Fe2O3 particles during lithium ion insertion/extraction process can be effectively hindered by the carbon matrix. On the other hand, carbon itself is an electronic conductor, the carbon layer and Fe2O3 particles connect closely, which ensures a good electrical contact during lithium insertion and extraction. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 23 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[3]   Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries [J].
Chen, Zhongxue ;
Qian, Jiangfeng ;
Ai, Xinping ;
Cao, Yuhang ;
Yang, Hanxi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :730-732
[4]   Advances in Tailoring Resorcinol-Formaldehyde Organic and Carbon Gels [J].
ElKhatat, Ahmed M. ;
Al-Muhtaseb, Shaheen A. .
ADVANCED MATERIALS, 2011, 23 (26) :2887-2903
[5]   Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes [J].
Han, SJ ;
Jang, BC ;
Kim, T ;
Oh, SM ;
Hyeon, T .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (11) :1845-1850
[6]   Solvent-assisted molten salt process: A new route to synthesise α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries [J].
Hassan, Mohd Faiz ;
Rahman, M. M. ;
Guo, Zai Ping ;
Chen, Zhi Xin ;
Liu, Hua Kun .
ELECTROCHIMICA ACTA, 2010, 55 (17) :5006-5013
[7]   CuO/C microspheres as anode materials for lithium ion batteries [J].
Huang, X. H. ;
Wang, C. B. ;
Zhang, S. Y. ;
Zhou, F. .
ELECTROCHIMICA ACTA, 2011, 56 (19) :6752-6756
[8]   The Role of Metallic Fe and Carbon Matrix in Fe2O3/Fe/Carbon Nanocomposite for Lithium-Ion Batteries [J].
Kim, Jisun ;
Chung, Min K. ;
Ka, Bok H. ;
Ku, Jun H. ;
Park, Sangjin ;
Ryu, Jiheon ;
Oh, Seung M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A412-A417
[9]   Effect of particle size on lithium intercalation into α-Fe2O3 [J].
Larcher, D ;
Masquelier, C ;
Bonnin, D ;
Chabre, Y ;
Masson, V ;
Leriche, JB ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (01) :A133-A139
[10]   On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential [J].
Laruelle, S ;
Grugeon, S ;
Poizot, P ;
Dollé, M ;
Dupont, L ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (05) :A627-A634