An extragradient algorithm for solving bilevel pseudomonotone variational inequalities

被引:62
作者
Anh, P. N. [2 ]
Kim, J. K. [2 ]
Muu, L. D. [1 ]
机构
[1] Inst Math, Hanoi 10000, Vietnam
[2] Kyungnam Univ, Dept Math, Masan 631701, Kyungnam, South Korea
关键词
Bilevel variational inequality; Pseudomonotonicity; Lipschitz continuity; Global convergence; Extragradient algorithm; EQUILIBRIUM PROBLEMS; DESCENT METHODS;
D O I
10.1007/s10898-012-9870-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an extragradient-type algorithm for solving bilevel pseudomonone variational inequalities. The proposed algorithm uses simple projection sequences. Under mild conditions, the convergence of the iteration sequences generated by the algorithm is obtained.
引用
收藏
页码:627 / 639
页数:13
相关论文
共 27 条
[1]   Using the banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities [J].
Anh, P ;
Muu, LD ;
Nguyen, VH ;
Strodiot, JJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 124 (02) :285-306
[2]  
Anh P.N., 2010, E W J MATH, V12, P49
[3]  
Anh PN, 2008, E W J MATH, V10, P81
[4]  
Anh PN., 2009, ACTA MATH VIETNAM, V34, P67
[5]  
Anh PN, 2009, NONLINEAR ANAL FORUM, V14, P27
[6]  
[Anonymous], 1996, MATH PROGRAMS EQUILI, DOI DOI 10.1017/CBO9780511983658
[7]  
[Anonymous], 2007, Finite-dimensional variational inequalities and complementarity problems
[8]  
[Anonymous], 1977, Solution of illposed problems
[9]  
Baiocchi C., 1984, VARIATIONAL QUASIVAR
[10]  
Bakushinskii A.B., 1994, ILL POSED PROBLEMS T