Scattering of kinks in noncanonical sine-Gordon Model

被引:0
作者
Takyi, Ishmael [1 ]
Barnes, Benedict [1 ]
Tornyeviadzi, Hoese M. [2 ]
Ackora-Prah, Joseph [1 ]
机构
[1] Kwame Nkrumah Univ Sci & Technol, Dept Math, Kumasi, Ghana
[2] Norwegian Univ Sci & Technol, Fac Engn Sci, Smart Water Lab, Alesund, Norway
来源
TURKISH JOURNAL OF PHYSICS | 2022年 / 46卷 / 01期
关键词
Kinks; scattering theory; bound states; lower-dimensional field theory; ANTIKINK INTERACTIONS; RESONANCE; IMPURITY; COLLISIONS; DYNAMICS; EQUATION; CAPTURE;
D O I
10.55730/1300-0101.2690
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we numerically study the scattering of kinks in the noncanonical sine-Gordon model using Fourier spectral methods. The model depends on two free parameters, which control the localized inner structure in the energy density and the characteristics of the scattering potential. It has been conjectured that the kink solutions in the noncanonical model possess inner structures in their energy density, and the presence of these yields bound states and resonance structures for some relative velocities between the kink and the antikink. In the numerical study, we observed that the classical kink mass decreases monotonically as the free parameters vary, and yields bion-formations and long-lived oscillations in the scattering of the kink-antikink system.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 54 条
  • [1] SOLITARY WAVE COLLISIONS
    ABLOWITZ, MJ
    KRUSKAL, MD
    LADIK, JF
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 36 (03) : 428 - 437
  • [2] FRACTAL STRUCTURE IN THE SCALAR LAMBDA(PHI-2-1)2 THEORY
    ANNINOS, P
    OLIVEIRA, S
    MATZNER, RA
    [J]. PHYSICAL REVIEW D, 1991, 44 (04): : 1147 - 1160
  • [3] First-order framework and generalized global defect solutions
    Bazeia, D.
    Losano, L.
    Menezes, R.
    [J]. PHYSICS LETTERS B, 2008, 668 (03) : 246 - 252
  • [4] Generalized global defect solutions
    Bazeia, D.
    Losano, L.
    Menezes, R.
    Oliveira, J. C. R. E.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2007, 51 (04): : 953 - 962
  • [5] Kink scattering in hyperbolic models
    Bazeia, D.
    Gomes, Adalto R.
    Nobrega, K. Z.
    Simas, Fabiano C.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (31):
  • [6] Analytical study of kinklike structures with polynomial tails
    Bazeia, D.
    Menezes, R.
    Moreira, D. C.
    [J]. JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (05):
  • [7] Stable static structures in models with higher-order derivatives
    Bazeia, D.
    Lobao, A. S., Jr.
    Menezes, R.
    [J]. ANNALS OF PHYSICS, 2015, 360 : 194 - 206
  • [8] Bazeia D, 2018, EUR PHYS J C, V78, DOI 10.1140/epjc/s10052-018-5815-z
  • [9] Scattering of the φ8 kinks with power-law asymptotics
    Belendryasova, Ekaterina
    Gani, Vakhid A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 414 - 426
  • [10] Belova T. I., 1997, Physics-Uspekhi, V40, P359, DOI 10.1070/PU1997v040n04ABEH000227