PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs

被引:186
作者
Andrzejewski, Sylvia [1 ,3 ]
Klimcakova, Eva [3 ]
Johnson, Radia M. [3 ]
Tabaries, Sebastien [3 ]
Annis, Matthew G. [3 ]
McGuirk, Shawn [1 ,3 ]
Northey, Jason J. [3 ,4 ]
Chenard, Valerie [1 ,3 ]
Sriram, Urshila [1 ,3 ]
Papadopoli, David J. [1 ,3 ]
Siegel, Peter M. [2 ,3 ]
St-Pierre, Julie [1 ,3 ,5 ]
机构
[1] McGill Univ, Dept Biochem, Montreal, PQ H3G 1Y6, Canada
[2] McGill Univ, Dept Med, Montreal, PQ H3G 1Y6, Canada
[3] McGill Univ, Goodman Canc Res Ctr, Montreal, PQ H3G 1Y6, Canada
[4] Univ Calif San Francisco, Ctr Bioengn & Tissue Regenerat, San Francisco, CA 94143 USA
[5] Univ Ottawa, Ottawa Inst Syst Biol, Dept Biochem Microbiol & Immunol, Ottawa, ON K1H 8M5, Canada
基金
加拿大健康研究院;
关键词
TUMOR-GROWTH; EXPRESSION; AXIS; SHCA; MODELS;
D O I
10.1016/j.cmet.2017.09.006
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Metabolic adaptations play a key role in fueling tumor growth. However, less is known regarding the metabolic changes that promote cancer progression to metastatic disease. Herein, we reveal that breast cancer cells that preferentially metastasize to the lung or bone display relatively high expression of PGC-1 alpha compared with those that metastasize to the liver. PGC-1 alpha promotes breast cancer cell migration and invasion in vitro andaugments lung metastasis in vivo. Pro-metastatic capabilities of PGC-1 alpha are linked to enhanced global bioenergetic capacity, facilitating the ability to cope with bioenergetic disruptors like biguanides. Indeed, biguanides fail to mitigate the PGC-1 alpha-dependent lung metastatic phenotype and PGC-1 alpha confers resistance to stepwise increases in metformin concentration. Overall, our results reveal that PGC-1 alpha stimulates bioenergetic potential, which promotes breast cancer metastasis and facilitates adaptation to metabolic drugs.
引用
收藏
页码:778 / +
页数:15
相关论文
共 46 条
  • [11] Transcriptional Control of Energy Homeostasis by the Estrogen-Related Receptors
    Giguere, Vincent
    [J]. ENDOCRINE REVIEWS, 2008, 29 (06) : 677 - 696
  • [12] Stable Isotope Tracer Analysis in Isolated Mitochondria from Mammalian Systems
    Gravel, Simon-Pierre
    Andrzejewski, Sylvia
    Avizonis, Daina
    St-Pierre, Julie
    [J]. METABOLITES, 2014, 4 (02): : 166 - 183
  • [13] Cancer metastasis:: Building a framework
    Gupta, Gaorav P.
    Massague, Joan
    [J]. CELL, 2006, 127 (04) : 679 - 695
  • [14] GSVA: gene set variation analysis for microarray and RNA-Seq data
    Haenzelmann, Sonja
    Castelo, Robert
    Guinney, Justin
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [15] Hallmarks of Cancer: The Next Generation
    Hanahan, Douglas
    Weinberg, Robert A.
    [J]. CELL, 2011, 144 (05) : 646 - 674
  • [16] Molecular Pathways: Is AMPK a Friend or a Foe in Cancer?
    Hardie, D. Grahame
    [J]. CLINICAL CANCER RESEARCH, 2015, 21 (17) : 3836 - 3840
  • [17] Metformin Action: Concentrations Matter
    He, Ling
    Wondisford, Fredric E.
    [J]. CELL METABOLISM, 2015, 21 (02) : 159 - 162
  • [18] Tumor suppressors and cell metabolism: a recipe for cancer growth
    Jones, Russell G.
    Thompson, Craig B.
    [J]. GENES & DEVELOPMENT, 2009, 23 (05) : 537 - 548
  • [19] A multigenic program mediating breast cancer metastasis to bone
    Kang, YB
    Siegel, PM
    Shu, WP
    Drobnjak, M
    Kakonen, SM
    Cordón-Cardo, C
    Guise, TA
    Massagué, J
    [J]. CANCER CELL, 2003, 3 (06) : 537 - 549
  • [20] Keibler MA, 2016, CANCER METAB, V4, DOI 10.1186/s40170-016-0156-6