Mutations at arginine 352 alter the pore architecture of CFTR

被引:47
作者
Cui, Guiying [1 ,2 ]
Zhang, Zhi-Ren [2 ]
O'Brien, Andrew R. W. [2 ]
Song, Binlin [2 ]
McCarty, Nael A. [1 ,2 ]
机构
[1] Emory Univ, Sch Med, Dept Pediat, Div Pulmonol Allergy Immunol Cyst Fibrosis & Slee, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
关键词
CFTR; chloride channel; salt bridge; channel open state; subconductance; blocker; anion selectivity;
D O I
10.1007/s00232-008-9105-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arginine 352 (R352) in the sixth transmembrane domain of the cystic fibrosis transmembrane conductance regulator (CFTR) previously was reported to form an anion/cation selectivity filter and to provide positive charge in the intracellular vestibule. However, mutations at this site have nonspecific effects, such as inducing susceptibility of endogenous cysteines to chemical modification. We hypothesized that R352 stabilizes channel structure and that charge-destroying mutations at this site disrupt pore architecture, with multiple consequences. We tested the effects of mutations at R352 on conductance, anion selectivity and block by the sulfonylurea drug glipizide, using recordings of wild-type and mutant channels. Charge-altering mutations at R352 destabilized the open state and altered both selectivity and block. In contrast, R352K-CFTR was similar to wild-type. Full conductance state amplitude was similar to that of wild-type CFTR in all mutants except R352E, suggesting that R352 does not itself form an anion coordination site. In an attempt to identify an acidic residue that may interact with R352, we found that permeation properties were similarly affected by charge-reversing mutations at D993. Wild-type-like properties were rescued in R352E/D993R-CFTR, suggesting that R352 and D993 in the wild-type channel may interact to stabilize pore architecture. Finally, R352A-CFTR was sensitive to modification by externally applied MTSEA(+), while wild-type and R352E/D993R-CFTR were not. These data suggest that R352 plays an important structural role in CFTR, perhaps reflecting its involvement in forming a salt bridge with residue D993.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 66 条
[1]   Specific recognition of saturated and 4,5-unsaturated hexuronate sugars by a periplasmic binding protein involved in pectin catabolism [J].
Abboft, D. Wade ;
Boraston, Alisdair B. .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 369 (03) :759-770
[2]   DEMONSTRATION THAT CFTR IS A CHLORIDE CHANNEL BY ALTERATION OF ITS ANION SELECTIVITY [J].
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
SOUZA, DW ;
PAUL, S ;
MULLIGAN, RC ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 253 (5016) :202-205
[3]   Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel [J].
Aubin, Chantal N. St. ;
Linsdell, Paul .
JOURNAL OF GENERAL PHYSIOLOGY, 2006, 128 (05) :535-545
[4]   IDENTIFICATION OF 12 NOVEL MUTATIONS IN THE CFTR GENE [J].
AUDREZET, MP ;
MERCIER, B ;
GUILLERMIT, H ;
QUERE, I ;
VERLINGUE, C ;
RAULT, G ;
FEREC, C .
HUMAN MOLECULAR GENETICS, 1993, 2 (01) :51-54
[5]   COUPLING OF CFTR CL- CHANNEL GATING TO AN ATP HYDROLYSIS CYCLE [J].
BAUKROWITZ, T ;
HWANG, TC ;
GADSBY, DC ;
NAIRN, AC .
NEURON, 1994, 12 (03) :473-482
[6]  
BRANCOLINI V, 1995, HUM GENET, V96, P312
[7]   Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli [J].
Braun, Volkmar ;
Herrmann, Christina .
JOURNAL OF BACTERIOLOGY, 2007, 189 (19) :6913-6918
[8]   A combined analysis of the cystic fibrosis transmembrane conductance regulator:: Implications for structure and disease models [J].
Chen, JM ;
Cutler, C ;
Jacques, C ;
Boeuf, G ;
Denamur, E ;
Lecointre, G ;
Mercier, B ;
Cramb, G ;
Férec, C .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (09) :1771-1788
[9]   DEFECTIVE INTRACELLULAR-TRANSPORT AND PROCESSING OF CFTR IS THE MOLECULAR-BASIS OF MOST CYSTIC-FIBROSIS [J].
CHENG, SH ;
GREGORY, RJ ;
MARSHALL, J ;
PAUL, S ;
SOUZA, DW ;
WHITE, GA ;
ORIORDAN, CR ;
SMITH, AE .
CELL, 1990, 63 (04) :827-834
[10]   PHOSPHORYLATION OF THE R-DOMAIN BY CAMP-DEPENDENT PROTEIN-KINASE REGULATES THE CFTR CHLORIDE CHANNEL [J].
CHENG, SH ;
RICH, DP ;
MARSHALL, J ;
GREGORY, RJ ;
WELSH, MJ ;
SMITH, AE .
CELL, 1991, 66 (05) :1027-1036