Combining literature text mining with microarray data: advances for system biology modeling

被引:37
作者
Faro, Alberto [1 ]
Giordano, Daniela [1 ]
Spampinato, Concetto [1 ]
机构
[1] Univ Catania, Fac Engn, I-95124 Catania, Italy
关键词
literature text mining; microarray data; biological databases; knowledge discovery; GENE-EXPRESSION; REGULATORY NETWORKS; RELATION EXTRACTION; SEARCH ENGINE; PROTEIN; TOOL; NAME; IDENTIFICATION; COOCCURRENCE; INFORMATION;
D O I
10.1093/bib/bbr018
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A huge amount of important biomedical information is hidden in the bulk of research articles in biomedical fields. At the same time, the publication of databases of biological information and of experimental datasets generated by high-throughput methods is in great expansion, and a wealth of annotated gene databases, chemical, genomic (including microarray datasets), clinical and other types of data repositories are now available on the Web. Thus a current challenge of bioinformatics is to develop targeted methods and tools that integrate scientific literature, biological databases and experimental data for reducing the time of database curation and for accessing evidence, either in the literature or in the datasets, useful for the analysis at hand. Under this scenario, this article reviews the knowledge discovery systems that fuse information from the literature, gathered by text mining, with microarray data for enriching the lists of down and upregulated genes with elements for biological understanding and for generating and validating new biological hypothesis. Finally, an easy to use and freely accessible tool, GeneWizard, that exploits text mining and microarray data fusion for supporting researchers in discovering gene-disease relationships is described.
引用
收藏
页码:61 / 82
页数:22
相关论文
共 114 条
[1]   Text mining for biology - the way forward: opinions from leading scientists [J].
Altman, Russ B. ;
Bergman, Casey M. ;
Blake, Judith ;
Blaschke, Christian ;
Cohen, Aaron ;
Gannon, Frank ;
Grivell, Les ;
Hahn, Udo ;
Hersh, William ;
Hirschman, Lynette ;
Jensen, Lars Juhl ;
Krallinger, Martin ;
Mons, Barend ;
O'Donoghue, Sean I. ;
Peitsch, Manuel C. ;
Rebholz-Schuhmann, Dietrich ;
Shatkay, Hagit ;
Valencia, Alfonso .
GENOME BIOLOGY, 2008, 9
[2]   Introduction: named entity recognition in biomedicine [J].
Ananiadou, S ;
Friedman, C ;
Tsujii, J .
JOURNAL OF BIOMEDICAL INFORMATICS, 2004, 37 (06) :393-395
[3]   Text mining and its potential applications in systems biology [J].
Ananiadou, Sophia ;
Kell, Douglas B. ;
Tsujii, Jun-ichi .
TRENDS IN BIOTECHNOLOGY, 2006, 24 (12) :571-579
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]  
BAMIDIS P, 2009, P 9 INT C INF TECHN
[6]   New approaches in teaching medical informatics to medical students [J].
Bamidis, Panagiotis D. ;
Konstantinidis, Stathis Th. ;
Kaldoudi, Eleni ;
Bratsas, Charalambos ;
Nikolaidou, Maria M. ;
Koufogiannis, Dimitris ;
Maglaveras, Nicos ;
Pappas, Costas .
PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, 2008, :385-+
[7]  
Bandy J, 2009, METHODS MOL BIOL, V563, P3, DOI 10.1007/978-1-60761-175-2_1
[8]   Large Scale Application of Neural Network Based Semantic Role Labeling for Automated Relation Extraction from Biomedical Texts [J].
Barnickel, Thorsten ;
Weston, Jason ;
Collobert, Ronan ;
Mewes, Hans-Werner ;
Stuempflen, Volker .
PLOS ONE, 2009, 4 (07)
[9]   Clustering gene expression patterns [J].
Ben-Dor, A ;
Shamir, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) :281-297
[10]   The Unified Medical Language System (UMLS): integrating biomedical terminology [J].
Bodenreider, O .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D267-D270