Lower bounds for the game colouring number of partial k-trees and planar graphs

被引:24
|
作者
Wu, Jiaojiao [1 ]
Zhu, Xuding [2 ,3 ]
机构
[1] Acad Sinica, Inst Math, Taipei 115, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung, Taiwan
[3] Natl Ctr Theoret Sci, Kaohsiung, Taiwan
关键词
game colouring number; game chromatic number; partial k-tree; planar graph;
D O I
10.1016/j.disc.2007.05.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper discusses the game colouring number of partial k-trees and planar graphs. Let col(g)(PTk) and col(g)(P) denote the maximum game colouring number of partial k trees and the maximum game colouring number of planar graphs, respectively. In this paper, we prove that col(g)(PTk) = 3k + 2 and col(g)(P) >= 11. We also prove that the game colouring number col(g)(G) of a graph is a monotone parameter, i.e., if H is a subgraph of G, then col(g)(H) <= col(g)(G). (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2637 / 2642
页数:6
相关论文
共 22 条