Versatile nanoporous bimetallic phosphides towards electrochemical water splitting

被引:562
作者
Tan, Yongwen [1 ,2 ]
Wang, Hao [2 ]
Liu, Pan [1 ,2 ]
Shen, Yuhao [2 ,3 ]
Cheng, Chun [2 ]
Hirata, Akihiko [2 ]
Fujita, Takeshi [2 ]
Tang, Zheng [3 ]
Chen, Mingwei [1 ,2 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200030, Peoples R China
[2] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[3] East China Normal Univ, Key Lab Polar Mat & Devices, Shanghai 200062, Peoples R China
[4] JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
基金
中国国家自然科学基金; 日本科学技术振兴机构;
关键词
HYDROGEN EVOLUTION REACTION; OXYGEN EVOLUTION; EFFICIENT ELECTROCATALYST; CARBON NANOTUBES; CATALYSTS; NANOSHEETS; ELECTRODE; NANOCRYSTALS; OXIDATION; SULFIDE;
D O I
10.1039/c6ee01109h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Alloying is an important approach to improving catalytic activities and realizing new functions of heterogeneous catalysts, which has extensively been employed in fabricating noble metal based bimetallic catalysts. However, it is technically unviable in the synthesis of alloyed transition metal compounds, which are emerging as important catalysts for water splitting, in a controllable manner using conventional wet chemical methods. Here we report nanoporous bimetallic (Co1-xFex)(2)P phosphides with controllable compositions and tuneable porosity, which are fabricated by the combination of metallurgical alloy design and electrochemical etching. By tailoring the Co/Fe ratios and nanoporosity, the bimetallic phosphides exhibit versatile catalytic activities towards HER and OER in acidic and basic electrolytes. As both the cathode and the anode of an electrolyser, nanoporous (Co0.52Fe0.48)(2)P shows an outstanding performance in water electrolysis, comparable to the commercial electrolyser with paired Pt/C and IrO2 catalysts.
引用
收藏
页码:2257 / 2261
页数:5
相关论文
共 48 条
[1]   Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J].
Cao, Bingfei ;
Veith, Gabriel M. ;
Neuefeind, Joerg C. ;
Adzic, Radoslav R. ;
Khalifah, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) :19186-19192
[2]  
Cobo S, 2012, NAT MATER, V11, P802, DOI [10.1038/NMAT3385, 10.1038/nmat3385]
[3]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[4]   An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation [J].
Gong, Ming ;
Li, Yanguang ;
Wang, Hailiang ;
Liang, Yongye ;
Wu, Justin Z. ;
Zhou, Jigang ;
Wang, Jian ;
Regier, Tom ;
Wei, Fei ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (23) :8452-8455
[5]   Powering the planet with solar fuel (vol 1, pg 7, 2009) [J].
Gray, Harry B. .
NATURE CHEMISTRY, 2009, 1 (01) :7-7
[6]   Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J].
Greeley, Jeff ;
Jaramillo, Thomas F. ;
Bonde, Jacob ;
Chorkendorff, I. B. ;
Norskov, Jens K. .
NATURE MATERIALS, 2006, 5 (11) :909-913
[7]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309
[8]   Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting [J].
Hou, Yang ;
Lohe, Martin R. ;
Zhang, Jian ;
Liu, Shaohua ;
Zhuang, Xiaodong ;
Feng, Xinliang .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :478-483
[9]   Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting [J].
Jiang, Nan ;
You, Bo ;
Sheng, Meili ;
Sun, Yujie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (21) :6251-6254
[10]   In situ Cobalt-Cobalt Oxide/N-Doped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution [J].
Jin, Haiyan ;
Wang, Jing ;
Su, Diefeng ;
Wei, Zhongzhe ;
Pang, Zhenfeng ;
Wang, Yong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (07) :2688-2694