A tool for deterministic and probabilistic sensitivity analysis of epidemiologic studies

被引:96
|
作者
Orsini, Nicola [1 ]
Bellocco, Rino [2 ]
Bottai, Matteo [3 ]
Wolk, Alicja [1 ]
Greenland, Sander [4 ]
机构
[1] Karolinska Inst, Inst Environm Med, Div Nutr Epidemiol, S-10401 Stockholm, Sweden
[2] Univ Milano Bicocca, Dept Stat, Milan, Italy
[3] Univ S Carolina, Arnold Sch Publ Hlth, Dept Epidemiol & Biostat, Columbia, SC USA
[4] Univ Calif Los Angeles, Dept Epidemiol Stat, Los Angeles, CA USA
关键词
st0138; episens; episensi; sensitivity analysis; unmeasured confounder; misclassification; bias; epidemiology;
D O I
10.1177/1536867X0800800103
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Classification errors, selection bias, and uncontrolled confounders are likely to be present in most epidemiologic studies, but the uncertainty introduced by these types of biases is seldom quantified. The authors present a simple yet easy-to-use Stata command to adjust the relative risk for exposure misclassification, selection bias, and an unmeasured confounder. This command implements both deterministic and probabilistic sensitivity analysis. It allows the user to specify a variety of probability distributions for the bias parameters, which are used to simulate distributions for the bias-adjusted exposure-disease relative risk. We illustrate the command by applying it to a case-control study of occupational resin exposure and lung-cancer deaths. By using plausible probability distributions for the bias parameters, investigators can report results that incorporate their uncertainties regarding systematic errors and thus avoid overstating their certainty about the effect under study. These results can supplement conventional results and can help pinpoint major sources of conflict in study interpretations.
引用
收藏
页码:29 / 48
页数:20
相关论文
共 50 条
  • [21] Probabilistic sensitivity analysis of complex models: a Bayesian approach
    Oakley, JE
    O'Hagan, A
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 751 - 769
  • [22] Weighted Probabilistic Neural Network Based on the Sensitivity Analysis
    Guo, Gaodeng
    Wan, Fangyi
    Yu, Xingliang
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 1049 - 1054
  • [23] Efficient Sensitivity Analysis for Inequality Queries in Probabilistic Databases
    Qin, Biao
    Yu, Jeffrey Xu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (01) : 86 - 99
  • [24] Evidence synthesis, parameter correlation and probabilistic sensitivity analysis
    Ades, AE
    Claxton, K
    Sculpher, M
    HEALTH ECONOMICS, 2006, 15 (04) : 373 - 381
  • [25] PROBABILISTIC CONSTRAINED LOAD FLOW BASED ON SENSITIVITY ANALYSIS
    KARAKATSANIS, TS
    HATZIARGYRIOU, ND
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1994, 9 (04) : 1853 - 1860
  • [26] Probabilistic Loss Sensitivity Analysis in Power Distribution Systems
    Abujubbeh, Mohammad
    Munikoti, Sai
    Pahwa, Anil
    Natarajan, Balasubramaniam
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (03) : 2100 - 2110
  • [27] Probabilistic Sensitivity Analysis With Respect to Bounds of Truncated Distributions
    Millwater, H.
    Feng, Y.
    JOURNAL OF MECHANICAL DESIGN, 2011, 133 (06)
  • [28] Epidemiologic studies of glyphosate and cancer: A review
    Mink, Pamela J.
    Mandel, Jack S.
    Sceurman, Bonnielin K.
    Lundin, Jessica I.
    REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2012, 63 (03) : 440 - 452
  • [29] Probabilistic Interval Method for Phased Array Sensitivity Analysis
    Poli, L.
    Anselmi, N.
    Gottardi, G.
    Rocca, P.
    Massa, A.
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 919 - 920
  • [30] A Semantic Social Network Analysis Tool for Sensitivity Analysis and What-If Scenario Testing in Alcohol Consumption Studies
    Alberto Benitez-Andrades, Jose
    Rodriguez-Gonzalez, Alejandro
    Benavides, Carmen
    Sanchez-Valdeon, Leticia
    Garcia, Isaias
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (11)