A tool for deterministic and probabilistic sensitivity analysis of epidemiologic studies

被引:96
|
作者
Orsini, Nicola [1 ]
Bellocco, Rino [2 ]
Bottai, Matteo [3 ]
Wolk, Alicja [1 ]
Greenland, Sander [4 ]
机构
[1] Karolinska Inst, Inst Environm Med, Div Nutr Epidemiol, S-10401 Stockholm, Sweden
[2] Univ Milano Bicocca, Dept Stat, Milan, Italy
[3] Univ S Carolina, Arnold Sch Publ Hlth, Dept Epidemiol & Biostat, Columbia, SC USA
[4] Univ Calif Los Angeles, Dept Epidemiol Stat, Los Angeles, CA USA
关键词
st0138; episens; episensi; sensitivity analysis; unmeasured confounder; misclassification; bias; epidemiology;
D O I
10.1177/1536867X0800800103
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Classification errors, selection bias, and uncontrolled confounders are likely to be present in most epidemiologic studies, but the uncertainty introduced by these types of biases is seldom quantified. The authors present a simple yet easy-to-use Stata command to adjust the relative risk for exposure misclassification, selection bias, and an unmeasured confounder. This command implements both deterministic and probabilistic sensitivity analysis. It allows the user to specify a variety of probability distributions for the bias parameters, which are used to simulate distributions for the bias-adjusted exposure-disease relative risk. We illustrate the command by applying it to a case-control study of occupational resin exposure and lung-cancer deaths. By using plausible probability distributions for the bias parameters, investigators can report results that incorporate their uncertainties regarding systematic errors and thus avoid overstating their certainty about the effect under study. These results can supplement conventional results and can help pinpoint major sources of conflict in study interpretations.
引用
收藏
页码:29 / 48
页数:20
相关论文
共 50 条
  • [1] Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics
    Schneeweiss, Sebastian
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2006, 15 (05) : 291 - 303
  • [2] Deterministic and probabilistic sensitivity analysis of fatigue fracture model parameters for a curved two layer composite
    Figiel, L.
    Kaminski, M.
    Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 1062 - 1064
  • [3] Probabilistic Approaches to Better Quantifying the Results of Epidemiologic Studies
    Gustafson, Paul
    McCandless, Lawrence C.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2010, 7 (04): : 1520 - 1539
  • [4] Adjusting for Selection Effects in Epidemiologic Studies Why Sensitivity Analysis is the Only "Solution"
    Geneletti, Sara
    Mason, Alexina
    Best, Nicky
    EPIDEMIOLOGY, 2011, 22 (01) : 36 - 39
  • [5] Incorporating calibrated model parameters into sensitivity analyses: Deterministic and probabilistic approaches
    Taylor D.C.A.
    Pawar V.
    Kruzikas D.T.
    Gilmore K.E.
    Sanon M.
    Weinstein M.C.
    PharmacoEconomics, 2012, 30 (2) : 119 - 126
  • [6] DETECTION OF HIV ANTIBODIES IN SALIVA AS A TOOL FOR EPIDEMIOLOGIC STUDIES
    VANDENAKKER, R
    VANDENHOEK, JAR
    VANDENAKKER, WMR
    KOOY, H
    VIJGE, E
    ROOSENDAAL, G
    COUTINHO, RA
    VANLOON, AM
    AIDS, 1992, 6 (09) : 953 - 957
  • [7] Epidemiologic research using probabilistic outcome definitions
    Cai, Bing
    Hennessy, Sean
    Lo Re, Vincent, III
    Small, Dylan S.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2015, 24 (01) : 19 - 26
  • [8] Sensitivity analysis of deterministic signaling pathways models
    Puszynski, K.
    Lachor, P.
    Kardynska, M.
    Smieja, J.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2012, 60 (03) : 471 - 479
  • [9] Probabilistic sensitivity analysis in health economics
    Baio, Gianluca
    Dawid, A. Philip
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (06) : 615 - 634
  • [10] Sensitivity analysis in probabilistic argumentation systems
    Chen, Y
    Khosla, D
    Multisensor, Multisource Information Fusion: Architectures, Algorithms and Applications 2005, 2005, 5813 : 290 - 300