Statistical theory of quasistationary states beyond the single water-bag case study

被引:10
作者
Assllani, Mallbor [1 ]
Fanelli, Duccio [2 ,3 ,4 ]
Turchi, Alessio [4 ,5 ,6 ]
Carletti, Timoteo [7 ,8 ]
Leoncini, Xavier [6 ]
机构
[1] Univ Florence, Dipartimento Energet, I-50139 Florence, Italy
[2] Univ Florence, Ist Nazl Fis Nucl, Dipartimento Energet, I-50139 Florence, Italy
[3] CNISM, I-50139 Florence, Italy
[4] Ctr Interdipartimentale Studio Dinamiche Compless, I-50019 Sesto Fiorentino, Italy
[5] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
[6] Aix Marseille Univ, Ctr Phys Theor, F-13288 Marseille 09, France
[7] Univ Namur, BE-5000 Namur, Belgium
[8] Namur Ctr Complex Syst, BE-5000 Namur, Belgium
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 02期
关键词
VLASOV EQUATION; RELAXATION; EQUILIBRIUM; PARTICLE; PLASMA; MODEL;
D O I
10.1103/PhysRevE.85.021148
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An analytical solution for the out-of-equilibrium quasistationary states of the paradigmatic Hamiltonian mean field (HMF) model can be obtained from a maximum entropy principle. The theory has been so far tested with reference to a specific class of initial condition, the so called (single-level) water-bag type. In this paper a step forward is taken by considering an arbitrary number of overlapping water bags. The theory is benchmarked to direct microcanonical simulations performed for the case of a two-level water-bag. The comparison is shown to return an excellent agreement.
引用
收藏
页数:7
相关论文
共 27 条
[1]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[2]   Maximum entropy principle explains quasistationary states in systems with long-range interactions:: The example of the Hamiltonian mean-field model [J].
Antoniazzi, Andrea ;
Fanelli, Duccio ;
Barre, Julien ;
Chavanis, Pierre-Henri ;
Dauxois, Thierry ;
Ruffo, Stefano .
PHYSICAL REVIEW E, 2007, 75 (01)
[3]   Enhancement of particle trapping in the wave-particle interaction [J].
Bachelard, R. ;
Antoniazzi, A. ;
Chandre, C. ;
Fanelli, D. ;
Vittot, M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (03) :660-665
[4]   The Vlasov equation and the Hamiltonian mean-field model [J].
Barré, J ;
Bouchet, F ;
Dauxois, T ;
Ruffo, S ;
Yamaguchi, YY .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (01) :177-183
[5]   Statistical theory of high-gain free-electron laser saturation -: art. no. 045501 [J].
Barré, J ;
Dauxois, T ;
De Ninno, G ;
Fanelli, D ;
Ruffo, S .
PHYSICAL REVIEW E, 2004, 69 (04) :4
[6]   Inequivalence of ensembles in a system with long-range Interactions -: art. no. 030601 [J].
Barré, J ;
Mukamel, D ;
Ruffo, S .
PHYSICAL REVIEW LETTERS, 2001, 87 (03) :30601-1
[7]   Relaxation to Boltzmann equilibrium of 2D Coulomb oscillators [J].
Benedetti, C ;
Rambaldi, S ;
Turchetti, G .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 (197-212) :197-212
[8]  
Binney J., 1987, GALACTIC DYNAMICS
[9]   A SPECIAL-CLASS OF STATIONARY FLOWS FOR 2-DIMENSIONAL EULER EQUATIONS - A STATISTICAL-MECHANICS DESCRIPTION .2. [J].
CAGLIOTI, E ;
LIONS, PL ;
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (02) :229-260
[10]   Statistical mechanics and dynamics of solvable models with long-range interactions [J].
Campa, Alessandro ;
Dauxois, Thierry ;
Ruffo, Stefano .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 480 (3-6) :57-159