Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer

被引:178
作者
Iommarini, Luisa [1 ]
Porcelli, Anna Maria [1 ]
Gasparre, Giuseppe [2 ]
Kurelac, Ivana [2 ]
机构
[1] Univ Bologna, Dipartimento Farm & Biotecnol, Bologna, Italy
[2] Univ Bologna, Dipartimento Sci Med & Chirurg, Bologna, Italy
关键词
hypoxia-inducible factor 1 alpha; cancer; mitochondria; oxidative phosphorylation; electron transport chain; prolyl hydroxylases; pseudohypoxia; pseudonormoxia; MITOCHONDRIAL RESPIRATORY-CHAIN; ENDOTHELIAL GROWTH-FACTOR; ACTIVATED PROTEIN-KINASE; FACTOR; 1-ALPHA; TUMOR ANGIOGENESIS; OXIDATIVE-PHOSPHORYLATION; TRANSCRIPTIONAL ACTIVITY; HIF-1-ALPHA EXPRESSION; PROLYL HYDROXYLASES; REDOX REGULATION;
D O I
10.3389/fonc.2017.00286
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Hypoxia-inducible factor 1 alpha (HIF-1 alpha) orchestrates cellular adaptation to low oxygen and nutrient-deprived environment and drives progression to malignancy in human solid cancers. Its canonical regulation involves prolyl hydroxylases (PHDs), which in normoxia induce degradation, whereas in hypoxia allow stabilization of HIF-1 alpha. However, in certain circumstances, HIF-1 alpha regulation goes beyond the actual external oxygen levels and involves PHD-independent mechanisms. Here, we gather and discuss the evidence on the non-canonical HIF-1 alpha regulation, focusing in particular on the consequences of mitochondrial respiratory complexes damage on stabilization of this pleiotropic transcription factor.
引用
收藏
页数:9
相关论文
共 103 条
[1]   Rare insights into cancer biology [J].
Adam, J. ;
Yang, M. ;
Soga, T. ;
Pollard, P. J. .
ONCOGENE, 2014, 33 (20) :2547-2556
[2]   The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia [J].
Agani, FH ;
Pichiule, P ;
Chavez, JC ;
LaManna, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (46) :35863-35867
[3]   TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation [J].
Amelio, Ivano ;
Inoue, Satoshi ;
Markert, Elke K. ;
Levine, Arnold J. ;
Knight, Richard A. ;
Mak, Tak W. ;
Melino, Gerry .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (01) :226-231
[4]   Spermidine/spermine N1-acetyltransferase-1 binds to hypoxia-inducible factor-1α (HIF-1α) and RACK1 and promotes ubiquitination and degradation of HIF-1α [J].
Baek, Jin H. ;
Liu, Ye V. ;
McDonald, Karin R. ;
Wesley, Jacob B. ;
Zhang, Huafeng ;
Semenza, Gregg L. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (46) :33358-33366
[5]   Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species [J].
Bell, Eric L. ;
Chandel, Navdeep S. .
OXYGEN SENSING AND HYPOXIA-INDUCED RESPONSES, 2007, 43 :17-27
[6]   An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis [J].
Birsoy, Kivanc ;
Wang, Tim ;
Chen, Walter W. ;
Freinkman, Elizaveta ;
Abu-Remaileh, Monther ;
Sabatini, David M. .
CELL, 2015, 162 (03) :540-551
[7]   Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation [J].
Brunelle, JK ;
Bell, EL ;
Quesada, NM ;
Vercauteren, K ;
Tiranti, V ;
Zeviani, M ;
Scarpulla, RC ;
Chandel, NS .
CELL METABOLISM, 2005, 1 (06) :409-414
[8]   Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1α Stability in Aerobic Conditions [J].
Burr, Stephen P. ;
Costa, Ana S. H. ;
Grice, Guinevere L. ;
Timms, Richard T. ;
Lobb, Ian T. ;
Freisinger, Peter ;
Dodd, Roger B. ;
Dougan, Gordon ;
Lehner, Paul J. ;
Frezza, Christian ;
Nathan, James A. .
Cell Metabolism, 2016, 24 (05) :740-752
[9]  
Calabrese C, 2013, CANCER METAB, V1, DOI 10.1186/2049-3002-1-11
[10]   Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia -: A mechanism of O2 sensing [J].
Chandel, NS ;
McClintock, DS ;
Feliciano, CE ;
Wood, TM ;
Melendez, JA ;
Rodriguez, AM ;
Schumacker, PT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) :25130-25138