Spatial sampling design for parameter estimation of the covariance function

被引:61
作者
Zhu, ZY
Stein, ML
机构
[1] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27510 USA
[2] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Fisher information matrix; simulated annealing; optimization; geostatistics;
D O I
10.1016/j.jspi.2004.04.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the spatial optimal sampling design for covariance parameter estimation. The spatial process is modeled as a Gaussian random field and maximum likelihood (ML) is used to estimate the covariance parameters. We use the log determinant of the inverse Fisher information matrix as the design criterion and run simulations to investigate the relationship between the inverse Fisher information matrix and the covariance matrix of the ML estimates. A simulated annealing algorithm is developed to search for an optimal design among all possible designs on a fine grid. Since the design criterion depends on the unknown parameters, we define relative efficiency of a design and consider minimax and Bayesian criteria to find designs that are robust for a range of parameter values. Simulation results are presented for the Matern class of covariance functions. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:583 / 603
页数:21
相关论文
共 42 条
[1]   Fisher information and maximum-likelihood estimation of covariance parameters in Gaussian stochastic processes [J].
Abt, M ;
Welch, WJ .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01) :127-137
[2]  
[Anonymous], 1964, Handbook of mathematical functions
[3]  
[Anonymous], 1997, APPROXIMATION ALGORI
[4]  
Atkinson A.C., 1992, OPTIMUM EXPT DESIGNS
[5]   SAMPLING DESIGNS FOR ESTIMATING INTEGRALS OF STOCHASTIC-PROCESSES [J].
BENHENNI, K ;
CAMBANIS, S .
ANNALS OF STATISTICS, 1992, 20 (01) :161-194
[6]   Optimal spatial sampling design for the estimation of the variogram based on a least squares approach [J].
Bogaert, P ;
Russo, D .
WATER RESOURCES RESEARCH, 1999, 35 (04) :1275-1289
[7]   A state-space model approach to optimum spatial sampling design based on entropy [J].
Bueso, MC ;
Angulo, JM ;
Alonso, FJ .
ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 1998, 5 (01) :29-44
[8]   Bayesian experimental design: A review [J].
Chaloner, K ;
Verdinelli, I .
STATISTICAL SCIENCE, 1995, 10 (03) :273-304
[9]  
Chen HS, 2000, STAT SINICA, V10, P141
[10]   ROBUST ESTIMATION OF THE VARIOGRAM .1. [J].
CRESSIE, N ;
HAWKINS, DM .
JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1980, 12 (02) :115-125