Kohn's theorem and Newton-Hooke symmetry for Hill's equations

被引:19
作者
Zhang, P. M. [1 ]
Gibbons, G. W. [2 ]
Horvathy, P. A. [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Modern Phys, Lanzhou, Peoples R China
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
[3] Univ Tours, Lab Math & Phys Theor, Tours, France
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevD.85.045031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Hill's equations, which first arose in the study of the Earth-Moon-Sun system, admit the two-parameter centrally extended Newton-Hooke symmetry without rotations. This symmetry allows us to extend Kohn's theorem about the center-of-mass decomposition. Particular light is shed on the problem using Duval's "Bargmann" framework. The separation of the center-of-mass motion into that of a guiding center and relative motion is derived by a generalized chiral decomposition.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry [J].
Alvarez, Pedro D. ;
Gomis, Joaquim ;
Kamimura, Kiyoshi ;
Plyushchay, Mikhail S. .
PHYSICS LETTERS B, 2008, 659 (05) :906-912
[2]   (2+1)D exotic Newton-Hooke symmetry, duality and projective phase [J].
Alvarez, Pedro D. ;
Gomis, Joaquim ;
Kamimura, Kiyoshi ;
Plyushchay, Mikhail S. .
ANNALS OF PHYSICS, 2007, 322 (07) :1556-1586
[3]   (2+1) Newton-Hooke Classical and Quantum Systems [J].
Arratia, Oscar ;
Martin, Miguel A. ;
del Olmo, Mariano A. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (07) :2035-2045
[4]   POSSIBLE KINEMATICS [J].
BACRY, H ;
LEVYLEBL.JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (10) :1605-&
[5]   CLASSIFICATION OF 10-DIMENSIONAL KINEMATICAL GROUPS WITH SPACE ISOTROPY [J].
BACRY, H ;
NUYTS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (10) :2455-2457
[6]   A novel approach to noncommutativity in planar quantum mechanics [J].
Banerjee, R .
MODERN PHYSICS LETTERS A, 2002, 17 (11) :631-645
[7]  
Binney J., 1987, GALACTIC DYNAMICS
[8]  
BOK BJ, 1934, HARVARD COLL OBS CIR, V384, P1
[9]   TIME-DEPENDENT QUANTUM-SYSTEMS AND CHRONOPROJECTIVE GEOMETRY [J].
BURDET, G ;
DUVAL, C ;
PERRIN, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (04) :255-262
[10]  
Chandrasekhar S., 1942, Principles of Stellar Dynamics