Periods of Modular GL2-type Abelian Varieties and p-adic Integration

被引:3
作者
Guitart, Xavier [1 ]
Masdeu, Marc [2 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Barcelona, Spain
[2] Univ Warwick, Math Inst, Coventry, W Midlands, England
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Modular Abelian varieties; p-adic L-invariants; p-adic uniformization; STARK-HEEGNER POINTS; ELLIPTIC-CURVES; ARITHMETIC GROUPS; L-INVARIANTS; COHOMOLOGY; JACOBIANS; UNIFORMIZATION; CONJECTURES; SURFACES; FORMS;
D O I
10.1080/10586458.2017.1284624
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a number field and with rational Fourier coefficients. Under certain additional conditions, Guitart and colleagues [Guitart etal. 16] constructed a p-adic lattice which is conjectured to be the Tate lattice of an elliptic curve E-f whose L-function equals that of f. The aim of this note is to generalize this construction when the Hecke eigenvalues of f generate a number field of degree d 1, in which case the geometric object associated with f is expected to be, in general, an abelian variety A(f) of dimension d. We also provide numerical evidence supporting the conjectural construction in the case of abelian surfaces.
引用
收藏
页码:344 / 361
页数:18
相关论文
共 54 条
[1]  
[Anonymous], 1982, GRADUATE TEXTS MATH
[2]  
ASH A, 1986, J REINE ANGEW MATH, V365, P192
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]  
Cremona J., 2016, ECDATA 2016 02 07
[5]  
Cremona J. E., 1997, ALGORITHMS MODULAR E
[6]   PERIODS OF CUSP FORMS AND ELLIPTIC-CURVES OVER IMAGINARY QUADRATIC FIELDS [J].
CREMONA, JE ;
WHITLEY, E .
MATHEMATICS OF COMPUTATION, 1994, 62 (205) :407-429
[7]  
CREMONA JE, 1984, COMPOS MATH, V51, P275
[8]  
Darmon H, 2003, INT MATH RES NOTICES, V2003, P2153
[9]   Integration on Hp x H and arithmetic applications [J].
Darmon, H .
ANNALS OF MATHEMATICS, 2001, 154 (03) :589-639
[10]   Stark-Heegner points on modular Jacobians [J].
Dasgupta, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (03) :427-469