Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?

被引:24
|
作者
Kim, Jihan [1 ]
Rodgers, Jocelyn M. [1 ]
Athenes, Manuel [2 ]
Smit, Berend [3 ,4 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[2] CEA Saclay, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
ADSORPTION; DIFFUSION; METHANE;
D O I
10.1021/ct200474j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the waste recycling Monte Carlo (WRMC) algorithm,(1) multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA.
引用
收藏
页码:3208 / 3222
页数:15
相关论文
共 50 条
  • [1] Molecular Dynamics Simulations Using Graphics Processing Units
    Baker, John A.
    Hirst, Jonathan D.
    MOLECULAR INFORMATICS, 2011, 30 (6-7) : 498 - 504
  • [2] Aging at the spin-glass/ferromagnet transition: Monte Carlo simulations using graphics processing units
    Manssen, Markus
    Hartmann, Alexander K.
    PHYSICAL REVIEW B, 2015, 91 (17)
  • [3] Pricing derivatives on graphics processing units using Monte Carlo simulation
    Abbas-Turki, L. A.
    Vialle, S.
    Lapeyre, B.
    Mercier, P.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (09): : 1679 - 1697
  • [4] Monte Carlo Option Pricing With Graphics Processing Units
    Nord, Fredrik
    Laure, Erwin
    APPLICATIONS, TOOLS AND TECHNIQUES ON THE ROAD TO EXASCALE COMPUTING, 2012, 22 : 143 - 150
  • [5] Pseudo-random number generators for Monte Carlo simulations on ATI Graphics Processing Units
    Demchik, Vadim
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (03) : 692 - 705
  • [6] Accelerating molecular dynamics simulations using Graphics Processing Units with CUDA
    Liu, Weiguo
    Schmidt, Bertil
    Voss, Gerrit
    Mueller-Wittig, Wolfgang
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (09) : 634 - 641
  • [7] Toward large-scale Hybrid Monte Carlo simulations of the Hubbard model on graphics processing units
    Wendt, Kyle A.
    Drut, Joaquin E.
    Lahde, Timo A.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (08) : 1651 - 1656
  • [8] Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium
    Cai, Fuhong
    He, Sailing
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (04)
  • [9] Micromagnetic simulations using Graphics Processing Units
    Lopez-Diaz, L.
    Aurelio, D.
    Torres, L.
    Martinez, E.
    Hernandez-Lopez, M. A.
    Gomez, J.
    Alejos, O.
    Carpentieri, M.
    Finocchio, G.
    Consolo, G.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (32)
  • [10] Large-scale simulations on multiple Graphics Processing Units (GPUs) for the direct simulation Monte Carlo method
    Su, C. -C.
    Smith, M. R.
    Kuo, F. -A.
    Wu, J. -S.
    Hsieh, C. -W.
    Tseng, K. -C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (23) : 7932 - 7958