Chaos for a class of complex epidemiological models

被引:9
作者
Di Gen-Hu [1 ]
Xu Yong [1 ]
Xu Wei [1 ]
Gu Ren-Cai [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
SIR(susceptible; infected; recoverd); model; chaotic motion; Melnikov's method; homoclinic bifurcation; OSCILLATOR; BEHAVIOR; SPREAD;
D O I
10.7498/aps.60.020504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the well-known SIR (susceptible, infected, recoverd) model with nonlinear complex incidence rates. Firstly, a series of coordinate transformations are carried out to change the equations as the amenable Hamiltonian systems. Secondly the Melnikov's method is used to establish the conditions of existence of chaotic motion and find the analytically critical values of homoclinic bifurcation. Good agreement can be found between numerical results and analytical results.
引用
收藏
页数:6
相关论文
共 25 条
[1]  
ANDERSON R M, 1991
[2]   SEASONALITY AND PERIOD-DOUBLING BIFURCATIONS IN AN EPIDEMIC MODEL [J].
ARON, JL ;
SCHWARTZ, IB .
JOURNAL OF THEORETICAL BIOLOGY, 1984, 110 (04) :665-679
[3]   COMPLEX BIFURCATIONS IN A PERIODICALLY FORCED NORMAL-FORM [J].
BAESENS, C ;
NICOLIS, G .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1983, 52 (04) :345-354
[4]  
Chow S.-N., 1994, NORMAL FORMS BIFURCA
[5]   Melnikov analysis of chaos in a simple epidemiological model [J].
Glendinning, P ;
Perry, LP .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (03) :359-373
[6]  
Guckenheimer J., 1983, NONLINEAR OSCILLATIO
[7]   SOME EPIDEMIOLOGIC MODELS WITH NONLINEAR INCIDENCE [J].
HETHCOTE, HW ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 29 (03) :271-287
[8]   Contribution to the mathematical theory of epidemics [J].
Kermack, WO ;
McKendrick, AG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) :700-721
[9]   BIFURCATION-ANALYSIS OF PERIODIC SEIR AND SIR EPIDEMIC MODELS [J].
KUZNETSOV, YA ;
PICCARDI, C .
JOURNAL OF MATHEMATICAL BIOLOGY, 1994, 32 (02) :109-121
[10]   Homoclinic chaos in averaged oscillator subjected to combined deterministic and narrow-band random excitations [J].
Lei You-Ming ;
Xu Wei .
ACTA PHYSICA SINICA, 2007, 56 (09) :5103-5110