The Brezis-Nirenberg problem for fractional systems with Hardy potentials

被引:1
作者
Shen, Yansheng [1 ]
机构
[1] Beijing Normal Univ, Minist Educ, Lab Math & Complex Syst, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Brezis-Nirenberg problem; concentration-compactness principle; fractional systems; singular Hardy potentials; variational method; CONCENTRATION-COMPACTNESS PRINCIPLE; POSITIVE SOLUTIONS; EXISTENCE; EQUATIONS; INEQUALITIES; CONSTANTS;
D O I
10.1002/mma.7856
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the existence of positive solutions to the following fractional elliptic systems with Hardy-type singular potentials and coupled by critical homogeneous nonlinearities {(-Delta)(s)u - mu(1)u/vertical bar x vertical bar(2)s = vertical bar u vertical bar(2s*-2)u + eta alpha/2(s)*vertical bar u vertical bar(alpha-2)|v vertical bar(beta)u + 1/2Q(u)(u, v) in Omega, (-Delta)(s)v - mu(2)v/vertical bar x vertical bar(2)s = vertical bar v vertical bar(2s*-2)v + eta beta/2(s)*vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2)v + 1/2Q(v)(u, v) in Omega, u, v > 0 in Omega, u = v = 0 in R-N\Omega, where (- Delta)(s) denotes the fractional Laplace operator, Omega subset of R-N is a smooth bounded domain such that 0 is an element of Omega, mu(1), mu(2) is an element of [0, Lambda(N, s)) with Lambda(N, s) the sharp constant of the fractional Hardy inequality, and 2s* = 2N/N-2s is the fractional critical Sobolev exponent. In order to prove the main result, we study the related fractional Hardy-Sobolev type inequalities and then establish the existence of positive solutions to the systems through variational methods.
引用
收藏
页码:1341 / 1358
页数:18
相关论文
共 36 条
[1]  
Abdellaoui B, 2009, CALC VAR PARTIAL DIF, V34, P97, DOI 10.1007/s00526-008-0177-2
[2]   ATTAINABILITY OF THE FRACTIONAL HARDY CONSTANT WITH NONLOCAL MIXED BOUNDARY CONDITIONS: APPLICATIONS [J].
Abdellaoui, Boumediene ;
Attar, Ahmed ;
Dieb, Abdelrazek ;
Peral, Ireneo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (12) :5963-5991
[3]   The effect of the Hardy potential in some Calderon-Zygmund properties for the fractional Laplacian [J].
Abdellaoui, Boumediene ;
Medina, Maria ;
Peral, Ireneo ;
Primo, Ana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) :8160-8206
[4]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[5]   Some remarks on the solvability of non-local elliptic problems with the Hardy potential [J].
Barrios, B. ;
Medina, M. ;
Peral, I. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (04)
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[8]   Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential [J].
Cao, Daomin ;
Yan, Shusen .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) :471-501
[9]   Nonlocal problems with critical Hardy nonlinearity [J].
Chen, Wenjing ;
Mosconi, Sunra ;
Squassina, Marco .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (11) :3065-3114
[10]  
Chen ZJ, 2015, T AM MATH SOC, V367, P3599