Robustness of chimera states for coupled FitzHugh-Nagumo oscillators

被引:182
作者
Omelchenko, Iryna [1 ]
Provata, Astero [2 ]
Hizanidis, Johanne [2 ]
Schoell, Eckehard [1 ]
Hoevel, Philipp [1 ,3 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[2] Natl Ctr Sci Res Demokritos, Inst Nanosci & Nanotechnol, Athens 15310, Greece
[3] Bernstein Ctr Computat Neurosci Berlin, D-10115 Berlin, Germany
关键词
NETWORKS; DYNAMICS; CONNECTIVITY; COHERENCE; POPULATIONS; INCOHERENCE;
D O I
10.1103/PhysRevE.91.022917
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Chimera states are complex spatio-temporal patterns that consist of coexisting domains of spatially coherent and incoherent dynamics. This counterintuitive phenomenon was first observed in systems of identical oscillators with symmetric coupling topology. Can one overcome these limitations? To address this question, we discuss the robustness of chimera states in networks of FitzHugh-Nagumo oscillators. Considering networks of inhomogeneous elements with regular coupling topology, and networks of identical elements with irregular coupling topologies, we demonstrate that chimera states are robust with respect to these perturbations and analyze their properties as the inhomogeneities increase. We find that modifications of coupling topologies cause qualitative changes of chimera states: additional random links induce a shift of the stability regions in the system parameter plane, gaps in the connectivity matrix result in a change of the multiplicity of incoherent regions of the chimera state, and hierarchical geometry in the connectivity matrix induces nested coherent and incoherent regions.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[2]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[3]   Chimera states in a two-population network of coupled pendulum-like elements [J].
Bountis, T. ;
Kanas, V. G. ;
Hizanidis, J. ;
Bezerianos, A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (04) :721-728
[4]   Interplay of time-delayed feedback control and temporally correlated noise in excitable systems [J].
Brandstetter, S. ;
Dahlem, M. A. ;
Schoell, E. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1911) :391-421
[5]  
Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
[6]   Uncovering space-independent communities in spatial networks [J].
Expert, Paul ;
Evans, Tim S. ;
Blondel, Vincent D. ;
Lambiotte, Renaud .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (19) :7663-7668
[7]  
Feder J., 2013, Fractals
[8]   Synchronization in networks of spatially extended systems [J].
Filatova, Anastasiya E. ;
Hramov, Alexander E. ;
Koronovskii, Alexey A. ;
Boccaletti, Stefano .
CHAOS, 2008, 18 (02)
[9]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[10]   Localized coherence in two interacting populations of social agents [J].
Gonzalez-Avella, J. C. ;
Cosenza, M. G. ;
San Miguel, M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 399 :24-30