Machine Learning Model Updates in Edge Computing: An Optimal Stopping Theory Approach

被引:12
作者
Aleksandrova, Ekaterina [1 ]
Anagnostopoulos, Christos [1 ]
Kolomvatsos, Kostas [1 ]
机构
[1] Univ Glasgow, Sch Comp Sci, Glasgow, Lanark, Scotland
来源
2019 18TH INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING (ISPDC 2019) | 2019年
基金
欧盟地平线“2020”;
关键词
Edge computing; machine learning model updates; communication efficiency; optimal stopping theory;
D O I
10.1109/ISPDC.2019.000-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work studies a sequential decision making methodology of when to update machine learning models in Edge Computing environments given underlying changes in the contextual data distribution. The proposed model focuses on updates scheduling and takes into consideration the optimal decision time for minimizing the network overhead. At the same time it preserves the prediction accuracy of models based on the principles of the Optimal Stopping Theory (OST). The paper reports on a comparative analysis between the proposed approach and other policies proposed in the respective literature while providing an evaluation of the performances using linear and support vector regression models. Our evaluation process is realized over real contextual data streams to reveal the strengths and weaknesses of the proposed strategy.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 20 条
[1]   Water Quality Monitoring Using Wireless Sensor Networks: Current Trends and Future Research Directions [J].
Adu-Manu, Kofi Sarpong ;
Tapparello, Cristiano ;
Heinzelman, Wendi ;
Katsriku, Ferdinand Apietu ;
Abdulai, Jamal-Deen .
ACM TRANSACTIONS ON SENSOR NETWORKS, 2017, 13 (01)
[2]   Using wireless underground sensor networks for mine and miner safety [J].
Akkas, M. Alper .
WIRELESS NETWORKS, 2018, 24 (01) :17-26
[3]   Quality-optimized predictive analytics [J].
Anagnostopoulos, Christos .
APPLIED INTELLIGENCE, 2016, 45 (04) :1034-1046
[4]   A delay-resilient and quality-aware mechanism over incomplete contextual data streams [J].
Anagnostopoulos, Christos ;
Kolomvatsos, Kostas .
INFORMATION SCIENCES, 2016, 355 :90-109
[5]   Time-optimized contextual information forwarding in mobile sensor networks [J].
Anagnostopoulos, Christos .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2014, 74 (05) :2317-2332
[6]  
Ferguson T. S., Optimal stopping and applications
[7]   Edge-centric Efficient Regression Analytics [J].
Harth, Natascha ;
Anagnostopoulos, Christos .
2018 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING (IEEE EDGE), 2018, :93-100
[8]  
Harth N, 2017, IEEE INT CONF BIG DA, P17, DOI 10.1109/BigData.2017.8257907
[9]   Online decorrelation of humidity and temperature in chemical sensors for continuous monitoring [J].
Huerta, Ramon ;
Mosqueiro, Thiago ;
Fonollosa, Jordi ;
Rulkova, Nikolai F. ;
Rodriguez-Lujan, Irene .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 157 :169-176
[10]  
Hwang E, 2016, ANN I STAT MATH, V68, P301, DOI 10.1007/s10463-014-0489-2