Domination number of cubic graphs with large girth

被引:7
作者
Kral', Daniel [1 ,2 ]
Skoda, Petr [3 ]
Volec, Jan [1 ]
机构
[1] Charles Univ Prague, Dept Appl Math, Fac Math & Phys, CR-11800 Prague, Czech Republic
[2] Charles Univ Prague, Inst Theoret Comp Sci, Fac Math & Phys, CR-11800 Prague, Czech Republic
[3] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
关键词
domination; dominating number; cubic graphs; probabilistic method;
D O I
10.1002/jgt.20568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every n-vertex cubic graph with girth at least g have domination number at most 0.299871n+ O(n/g)<3n/10 + O(n/g) which improves a previous bound of 0.321216n+ O(n/g) by Rautenbach and Reed. (C) 2011 Wiley Periodicals, Inc. J Graph Theory 69:131-142, 2012
引用
收藏
页码:131 / 142
页数:12
相关论文
共 10 条
[1]   Minimum independent dominating sets of random cubic graphs [J].
Duckworth, W ;
Wormald, NC .
RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (02) :147-161
[2]   Domination in a graph with a 2-factor [J].
Kawarabayashi, K ;
Plummer, MD ;
Saito, A .
JOURNAL OF GRAPH THEORY, 2006, 52 (01) :1-6
[3]  
Kelmans A., ARXIVMATHCO0607512
[4]   An upper bound on the domination number of n-vertex connected cubic graphs [J].
Kostochka, A. V. ;
Stodolsky, B. Y. .
DISCRETE MATHEMATICS, 2009, 309 (05) :1142-1162
[5]   On domination in connected cubic graphs [J].
Kostochka, AV ;
Stodolsky, BY .
DISCRETE MATHEMATICS, 2005, 304 (1-3) :45-50
[6]   Domination in graphs of minimum degree at least two and large girth [J].
Loewenstein, Christian ;
Rautenbach, Dieter .
GRAPHS AND COMBINATORICS, 2008, 24 (01) :37-46
[7]   THE DOMINATING NUMBER OF A RANDOM CUBIC GRAPH [J].
MOLLOY, M ;
REED, B .
RANDOM STRUCTURES & ALGORITHMS, 1995, 7 (03) :209-221
[8]  
Rautenbach D, 2008, LECT NOTES COMPUT SC, V4535, P186
[9]  
REED B, 1996, COMBIN PROB COMPUT, V5, P267
[10]  
Wormald N. C., 2009, COMMUNICATION