A finite volume element method for a non-linear elliptic problem

被引:45
作者
Chatzipantelidis, P [1 ]
Ginting, V [1 ]
Lazarov, RD [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
finite volume element method; non-linear elliptic equation; error estimates; fixed point iterations; Newton's method;
D O I
10.1002/nla.439
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a finite volume discretization of second-order non-linear elliptic boundary value problems on polygonal domains. Using relatively standard assumptions we show the existence of the finite volume solution. Furthermore, for a sufficiently small data the uniqueness of the finite volume solution may also be deduced. We derive error estimates in H-1-, L-2- and L-infinity-norm for small data and convergence in H-1-norm for large data. In addition a Newton's method is analysed for the approximation of the finite volume solution and numerical experiments are presented. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:515 / 546
页数:32
相关论文
共 27 条
[1]  
[Anonymous], 2002, MATH THEORY FINITE E, DOI DOI 10.1007/978-1-4757-3658-8
[2]  
[Anonymous], 1975, PURE APPL MATH
[3]  
[Anonymous], COMM APPL NONLINEAR
[4]  
ARTOLA M, 1986, B UNIONE MAT ITAL, V5B, P51
[5]   Two-level method for the discretization of nonlinear boundary value problems [J].
Axelsson, O ;
Layton, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2359-2374
[6]   ON NONLINEAR GENERALIZED CONJUGATE-GRADIENT METHODS [J].
AXELSSON, O ;
CHRONOPOULOS, AT .
NUMERISCHE MATHEMATIK, 1994, 69 (01) :1-5
[7]  
AXELSSON O, 1982, LECT NOTES MATH, V953, P1
[8]  
Bergam A, 2003, NUMER MATH, V95, P599, DOI 10.1007/s00211-003-0460-2
[9]  
Brezis H., 1983, ANAL FONCTIONNELLE
[10]  
CHATZIPANTELIDI.P, 2004, IN PRESS SIAM J NUME