Theoretical Study of Anisotropic Carrier Mobility for Two-Dimensional Nb2Se9 Material

被引:12
作者
Chung, You Kyoung [1 ]
Lee, Junho [1 ]
Lee, Weon-Gyu [1 ]
Sung, Dongchul [1 ]
Chae, Sudong [2 ]
Oh, Seungbae [2 ]
Choi, Kyung Hwan [3 ]
Kim, Bum Jun [3 ]
Choi, Jae-Young [2 ,3 ]
Huh, Joonsuk [1 ,3 ,4 ]
机构
[1] Sungkyunkwan Univ, Dept Chem, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Sch Adv Inst Nanotechnol, Suwon 16419, South Korea
[4] Sungkyunkwan Univ, Inst Quantum Biophys, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTRON-MOBILITY; MONOLAYER; SEMICONDUCTOR; NANORIBBONS; TRANSITION; SCATTERING; TRANSPORT; CARBON; COHP;
D O I
10.1021/acsomega.1c03728
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Finding new materials with satisfying all the desired criteria for nanodevices is an extremely difficult work. Here, we introduce a novel Nb2Se9 material as a promising candidate, capable of overcoming some physical limitations, such as a suitable band gap, high carrier mobility, and chemical stability. Unlike graphene, it has a noticeable band gap and no dangling bonds at surfaces that deteriorate transport properties, owing to its molecular chain structure. Using density functional theory (DFT) calculations with deformation potential (DP) theory, we find that the electron mobility of 2D Nb2Se9 across the axis direction reaches up to 2.56 x 10(3) cm(2) V-1 s(-1) and is approximately 2.5-6 times higher than the mobility of other 2D materials, such as MoS2, black phosphorous, and InSe, at room temperature. Moreover, the mobility of 2D Nb2Se9 is highly anisotropic (mu(a)/mu(c) approximate to 6.5). We demonstrate the potential of 2D Nb2Se9 for applications in nanoscale electronic devices and, possibly, mid-infrared photodetectors.
引用
收藏
页码:26782 / 26790
页数:9
相关论文
共 83 条
[1]   One-Dimensional Single-Chain Nb2Se9 as Efficient Electrocatalyst for Hydrogen Evolution Reaction [J].
Agyapong-Fordjour, Frederick Osei-Tutu ;
Oh, Seungbae ;
Lee, Junho ;
Chae, Sudong ;
Choi, Kyung Hwan ;
Choi, Soo Ho ;
Boandoh, Stephen ;
Yang, Woochul ;
Huh, Joonsuk ;
Kim, Ki Kang ;
Choi, Jae-Young .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (08) :5785-5792
[2]   Intrinsic charge-mobility in benzothieno[3,2-b][1]benzothiophene (BTBT) organic semiconductors is enhanced with long alkyl side-chains [J].
Alkan, M. ;
Yavuz, I. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (23) :15970-15979
[3]   Metallic LiMo3Se3 nanowire film sensors for electrical detection of metal ions in water [J].
Allen, Mark ;
Sabio, Erwin M. ;
Qi, Xiubin ;
Nwengela, Bokuba ;
Islam, M. Saif ;
Osterloh, Frank E. .
LANGMUIR, 2008, 24 (13) :7031-7037
[4]   Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors [J].
Amani, Matin ;
Tan, Chaoliang ;
Zhang, George ;
Zhao, Chunsong ;
Bullock, James ;
Song, Xiaohui ;
Kim, Hyungjin ;
Shrestha, Vivek Raj ;
Gao, Yang ;
Crozier, Kenneth B. ;
Scott, Mary ;
Javey, Ali .
ACS NANO, 2018, 12 (07) :7253-7263
[5]   Structures, stabilities and electronic properties of graphdiyne nanoribbons [J].
Bai, Hongcun ;
Zhu, Ying ;
Qiao, Weiye ;
Huang, Yuanhe .
RSC ADVANCES, 2011, 1 (05) :768-775
[6]  
Bandurin DA, 2017, NAT NANOTECHNOL, V12, P223, DOI [10.1038/NNANO.2016.242, 10.1038/nnano.2016.242]
[7]   DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS [J].
BARDEEN, J ;
SHOCKLEY, W .
PHYSICAL REVIEW, 1950, 80 (01) :72-80
[8]   Charge carrier mobility in quasi-one-dimensional systems:: Application to a guanine stack [J].
Beleznay, FB ;
Bogár, F ;
Ladik, J .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (11) :5690-5695
[9]  
Bescond M., 2015, SEMICONDUCTOR NANOWI, P173, DOI [10.1016/B978-1-78242-253-2.00006-2, DOI 10.1016/B978-1-78242-253-2.00006-2]
[10]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355