Measure functional differential equations and functional dynamic equations on time scales

被引:112
作者
Federson, Marcia [2 ]
Mesquita, Jaqueline G. [2 ]
Slavik, Antonin [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Measure functional differential equations; Functional dynamic equations; Generalized ordinary differential equations; Existence and uniqueness; Continuous dependence on a parameter; Periodic averaging;
D O I
10.1016/j.jde.2011.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study measure functional differential equations and clarify their relation to generalized ordinary differential equations. We show that functional dynamic equations on time scales represent a special case of measure functional differential equations. For both types of equations, we obtain results on the existence and uniqueness of solutions, continuous dependence, and periodic averaging. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3816 / 3847
页数:32
相关论文
共 22 条
[1]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[2]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[3]  
DAS PC, 1972, CZECH MATH J, V22, P145
[4]  
Deo S.., 1982, LECT NOTES MATH, V954
[5]  
Federson M, 2006, DIFFER INTEGRAL EQU, V19, P1201
[6]  
Frakova D, 1991, Math. Bohem., V116, P20
[7]  
Frankova D., 1989, Cas. Pro Pest. Mat., V114, P230
[8]  
Gordon R. A., 1994, The integrals of Lebesgue, Denjoy, Perron, and Henstock
[9]  
Hale J.K., 1993, Introduction to Functional Differntial Equations
[10]  
Hilger S., 1990, Result math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]