Boundary Integral Operators for the Heat Equation in Time-Dependent Domains

被引:1
作者
Brugger, Rahel [1 ]
Harbrecht, Helmut [1 ]
Tausch, Johannes [2 ]
机构
[1] Univ Basel, Dept Math & Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[2] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
基金
美国国家科学基金会;
关键词
Heat equation; boundary integral equation; Time-dependent moving boundary; Non-cylindrical domain; NUMERICAL-SOLUTION; LAYER POTENTIALS;
D O I
10.1007/s00020-022-02691-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article provides a functional analytical framework for boundary integral equations of the heat equation in time-dependent domains. More specifically, we consider a non-cylindrical domain in space-time that is the C-2-diffeomorphic image of a cylinder, i.e., the tensor product of a time interval and a fixed domain in space. On the non-cylindrical domain, we introduce Sobolev spaces, trace lemmata and provide the mapping properties of the layer operators. Here it is critical that the Neumann trace requires a correction term for the normal velocity of the moving boundary. Therefore, one has to analyze the situation carefully.
引用
收藏
页数:28
相关论文
共 20 条
[1]  
[Anonymous], 2008, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements
[2]  
[Anonymous], 1987, PARTIAL DIFFERENTIAL, DOI [DOI 10.1017/CBO9781139171755, 10.1017/CBO9781139171755]
[3]  
[Anonymous], 1983, PARTIAL DIFFERENTIAL
[4]   ON THE NUMERICAL SOLUTION OF A TIME-DEPENDENT SHAPE OPTIMIZATION PROBLEM FOR THE HEAT EQUATION [J].
Bruegger, Rahel ;
Harbrecht, Helmut ;
Tausch, Johannes .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (02) :931-953
[5]   On the numerical solution of an inverse boundary value problem for the heat equation [J].
Chapko, R ;
Kress, R ;
Yoon, JR .
INVERSE PROBLEMS, 1998, 14 (04) :853-867
[6]   BOUNDARY INTEGRAL-OPERATORS FOR THE HEAT-EQUATION [J].
COSTABEL, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (04) :498-552
[7]  
Dohr S, 2019, THESIS TU GRAZ AUSTR
[8]   Space-time boundary element methods for the heat equation [J].
Dohr, Stefan ;
Niino, Kazuki ;
Steinbach, Olaf .
SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS, 2019, 25 :1-60
[9]  
Dziri R, 2001, LECT NOTES PURE APPL, V216, P87
[10]   Analysis of the domain mapping method for elliptic diffusion problems on random domains [J].
Harbrecht, H. ;
Peters, M. ;
Siebenmorgen, M. .
NUMERISCHE MATHEMATIK, 2016, 134 (04) :823-856