Dockground: A comprehensive data resource for modeling of protein complexes

被引:64
|
作者
Kundrotas, Petras J. [1 ]
Anishchenko, Ivan [1 ]
Dauzhenka, Taras [1 ]
Kotthoff, Ian [1 ]
Mnevets, Daniil [1 ]
Copeland, Matthew M. [1 ]
Vakser, Ilya A. [1 ,2 ]
机构
[1] Univ Kansas, Ctr Computat Biol, 2030 Becker Dr, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Mol Biosci, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
protein recognition; protein-protein interactions; structure prediction; benchmark sets; STRUCTURAL TEMPLATES; UNBOUND STRUCTURES; DOCKING; BENCHMARK; PREDICTION; INTERFACES; RECOGNITION; POTENTIALS; BLAST; SET;
D O I
10.1002/pro.3295
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Characterization of life processes at the molecular level requires structural details of protein interactions. The number of experimentally determined structures of protein-protein complexes accounts only for a fraction of known protein interactions. This gap in structural description of the interactome has to be bridged by modeling. An essential part of the development of structural modeling/docking techniques for protein interactions is databases of protein-protein complexes. They are necessary for studying protein interfaces, providing a knowledge base for docking algorithms, and developing intermolecular potentials, search procedures, and scoring functions. Development of protein-protein docking techniques requires thorough benchmarking of different parts of the docking protocols on carefully curated sets of protein-protein complexes. We present a comprehensive description of the Dockground resource () for structural modeling of protein interactions, including previously unpublished unbound docking benchmark set 4, and the X-ray docking decoy set 2. The resource offers a variety of interconnected datasets of protein-protein complexes and other data for the development and testing of different aspects of protein docking methodologies. Based on protein-protein complexes extracted from the PDB biounit files, Dockground offers sets of X-ray unbound, simulated unbound, model, and docking decoy structures. All datasets are freely available for download, as a whole or selecting specific structures, through a user-friendly interface on one integrated website.
引用
收藏
页码:172 / 181
页数:10
相关论文
共 50 条
  • [31] The COMPARE allergen database: a comprehensive Protein Allergen resource
    Bowman, C. C.
    Choudhuri, S.
    Farr, B. A.
    Kough, J.
    Ladics, G. S.
    Li, J.
    Mcclain, S.
    Mckillop, K. A.
    Narrod, C.
    Silvanovich, A.
    Song, P.
    Van Ree, R.
    ALLERGY, 2017, 72 : 750 - 751
  • [32] DOCKGROUND system of databases for protein recognition studies: Unbound structures for docking
    Gao, Ying
    Douguet, Dominique
    Tovchigrechko, Andrey
    Vakser, Ilya A.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 69 (04) : 845 - 851
  • [33] Data Resource Profile: Victorian Comprehensive Cancer Centre Data Connect
    Lee, Alex
    McCarthy, Damien
    Bergin, Rebecca J.
    Drosdowsky, Allison
    Gutierrez, Javiera Martinez
    Kearney, Chris
    Philip, Sally
    Rafiq, Meena
    Venning, Brent
    Wawryk, Olivia
    Zhang, Jianrong
    Emery, Jon
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2023, 52 (06) : E292 - E300
  • [34] WormBase:: a comprehensive data resource for Caenorhabditis biology and genomics
    Chen, NS
    Harris, TW
    Antoshechkin, I
    Bastiani, C
    Bieri, T
    Blasiar, D
    Bradnam, K
    Canaran, P
    Chan, J
    Chen, CK
    Chen, WJ
    Cunningham, F
    Davis, P
    Kenny, E
    Kishore, R
    Lawson, D
    Lee, R
    Muller, HM
    Nakamura, C
    Pai, S
    Ozersky, P
    Petcherski, A
    Rogers, A
    Sab, A
    Schwarz, EM
    Van Auken, K
    Wang, QH
    Durbin, R
    Spieth, J
    Sternberg, PW
    Stein, LD
    NUCLEIC ACIDS RESEARCH, 2005, 33 : D383 - D389
  • [35] MitoepigenomeKB a comprehensive resource for human mitochondrial epigenetic data
    Ghosh, Sourav
    Ranawat, Anop Singh
    Tolani, Priya
    Scaria, Vinod
    MITOCHONDRION, 2018, 42 : 54 - 58
  • [36] Hierarchical PLS modeling for predicting the binding of a comprehensive set of structurally diverse protein-ligand complexes
    Lindstrom, Anton
    Pettersson, Fredrik
    Almqvist, Fredrik
    Berglund, Anders
    Kihlberg, Jan
    Linusson, Anna
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (03) : 1154 - 1167
  • [37] JUMPt: Comprehensive Protein Turnover Modeling of In Vivo Pulse SILAC Data by Ordinary Differential Equations
    Chepyala, Surendhar Reddy
    Liu, Xueyan
    Yang, Ka
    Wu, Zhiping
    Breuer, Alex M.
    Cho, Ji-Hoon
    Li, Yuxin
    Mancieri, Ariana
    Jiao, Yun
    Zhang, Hui
    Peng, Junmin
    ANALYTICAL CHEMISTRY, 2021, 93 (40) : 13495 - 13504
  • [38] Modeling of the structure of protein–DNA complexes using the data from FRET and footprinting experiments
    Armeev G.A.
    Gorkovets T.K.
    Efimova D.A.
    Shaitan K.V.
    Shaytan A.K.
    Moscow University Biological Sciences Bulletin, 2016, 71 (1) : 29 - 33
  • [39] The Protein Data Bank archive as an open data resource
    Berman, Helen M.
    Kleywegt, Gerard J.
    Nakamura, Haruki
    Markley, John L.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2014, 28 (10) : 1009 - 1014
  • [40] The Protein Data Bank archive as an open data resource
    Helen M. Berman
    Gerard J. Kleywegt
    Haruki Nakamura
    John L. Markley
    Journal of Computer-Aided Molecular Design, 2014, 28 : 1009 - 1014