Functional assessment of human enhancer activities using whole-genome STARR-sequencing

被引:72
作者
Liu, Yuwen [1 ,2 ,3 ]
Yu, Shan [1 ,2 ,3 ]
Dhiman, Vineet K. [1 ,2 ,3 ]
Brunetti, Tonya [1 ,2 ,3 ]
Eckart, Heather [3 ]
White, Kevin P. [1 ,2 ,3 ,4 ]
机构
[1] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[4] Tempus Labs, 600 West Chicago Ave, Chicago, IL 60654 USA
关键词
Enhancers; Regulatory elements; STARR-seq; Non-coding regions; HIGH-THROUGHPUT; ACTIVITY MAPS; EXPRESSION ANALYSIS; MAMMALIAN-CELLS; SEQ; CHROMATIN; ELEMENTS; GENE; IDENTIFICATION; PREDICTIONS;
D O I
10.1186/s13059-017-1345-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genome-wide quantification of enhancer activity in the human genome has proven to be a challenging problem. Recent efforts have led to the development of powerful tools for enhancer quantification. However, because of genome size and complexity, these tools have yet to be applied to the whole human genome. Results: In the current study, we use a human prostate cancer cell line, LNCaP as a model to perform whole human genome STARR-seq (WHG-STARR-seq) to reliably obtain an assessment of enhancer activity. This approach builds upon previously developed STARR-seq in the fly genome and CapSTARR-seq techniques in targeted human genomic regions. With an improved library preparation strategy, our approach greatly increases the library complexity per unit of starting material, which makes it feasible and cost-effective to explore the landscape of regulatory activity in the much larger human genome. In addition to our ability to identify active, accessible enhancers located in open chromatin regions, we can also detect sequences with the potential for enhancer activity that are located in inaccessible, closed chromatin regions. When treated with the histone deacetylase inhibitor, Trichostatin A, genes nearby this latter class of enhancers are up-regulated, demonstrating the potential for endogenous functionality of these regulatory elements. Conclusion: WHG-STARR-seq provides an improved approach to current pipelines for analysis of high complexity genomes to gain a better understanding of the intricacies of transcriptional regulation.
引用
收藏
页数:13
相关论文
共 39 条
[11]   Systematic mapping of functional enhancer-promoter connections with CRISPR interference [J].
Fulco, Charles P. ;
Munschauer, Mathias ;
Anyoha, Rockwell ;
Munson, Glen ;
Grossman, Sharon R. ;
Perez, Elizabeth M. ;
Kane, Michael ;
Cleary, Brian ;
Lander, Eric S. ;
Engreitz, Jesse M. .
SCIENCE, 2016, 354 (6313) :769-773
[12]  
Gisselbrecht SS, 2013, NAT METHODS, V10, P774, DOI [10.1038/NMETH.2558, 10.1038/nmeth.2558]
[13]   The selection and function of cell type-specific enhancers [J].
Heinz, Sven ;
Romanoski, Casey E. ;
Benner, Christopher ;
Glass, Christopher K. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2015, 16 (03) :144-154
[14]   Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities [J].
Heinz, Sven ;
Benner, Christopher ;
Spann, Nathanael ;
Bertolino, Eric ;
Lin, Yin C. ;
Laslo, Peter ;
Cheng, Jason X. ;
Murre, Cornelis ;
Singh, Harinder ;
Glass, Christopher K. .
MOLECULAR CELL, 2010, 38 (04) :576-589
[15]   A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity [J].
Inoue, Fumitaka ;
Kircher, Martin ;
Martin, Beth ;
Cooper, Gregory M. ;
Witten, Daniela M. ;
McManus, Michael T. ;
Ahituv, Nadav ;
Shendure, Jay .
GENOME RESEARCH, 2017, 27 (01) :38-52
[16]   Decoding enhancers using massively parallel reporter assays [J].
Inoue, Fumitaka ;
Ahituv, Nadav .
GENOMICS, 2015, 106 (03) :159-164
[17]   Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay [J].
Kheradpour, Pouya ;
Ernst, Jason ;
Melnikov, Alexandre ;
Rogov, Peter ;
Wang, Li ;
Zhang, Xiaolan ;
Alston, Jessica ;
Mikkelsen, Tarjei S. ;
Kellis, Manolis .
GENOME RESEARCH, 2013, 23 (05) :800-811
[18]   Integrative analysis of 111 reference human epigenomes [J].
Kundaje, Anshul ;
Meuleman, Wouter ;
Ernst, Jason ;
Bilenky, Misha ;
Yen, Angela ;
Heravi-Moussavi, Alireza ;
Kheradpour, Pouya ;
Zhang, Zhizhuo ;
Wang, Jianrong ;
Ziller, Michael J. ;
Amin, Viren ;
Whitaker, John W. ;
Schultz, Matthew D. ;
Ward, Lucas D. ;
Sarkar, Abhishek ;
Quon, Gerald ;
Sandstrom, Richard S. ;
Eaton, Matthew L. ;
Wu, Yi-Chieh ;
Pfenning, Andreas R. ;
Wang, Xinchen ;
Claussnitzer, Melina ;
Liu, Yaping ;
Coarfa, Cristian ;
Harris, R. Alan ;
Shoresh, Noam ;
Epstein, Charles B. ;
Gjoneska, Elizabeta ;
Leung, Danny ;
Xie, Wei ;
Hawkins, R. David ;
Lister, Ryan ;
Hong, Chibo ;
Gascard, Philippe ;
Mungall, Andrew J. ;
Moore, Richard ;
Chuah, Eric ;
Tam, Angela ;
Canfield, Theresa K. ;
Hansen, R. Scott ;
Kaul, Rajinder ;
Sabo, Peter J. ;
Bansal, Mukul S. ;
Carles, Annaick ;
Dixon, Jesse R. ;
Farh, Kai-How ;
Feizi, Soheil ;
Karlic, Rosa ;
Kim, Ah-Ram ;
Kulkarni, Ashwinikumar .
NATURE, 2015, 518 (7539) :317-330
[19]   High-throughput functional testing of ENCODE segmentation predictions [J].
Kwasnieski, Jamie C. ;
Fiore, Christopher ;
Chaudhari, Hemangi G. ;
Cohen, Barak A. .
GENOME RESEARCH, 2014, 24 (10) :1595-1602
[20]  
Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923]